Chu, Ya-Chi
Provable and Practical Online Learning Rate Adaptation with Hypergradient Descent
Chu, Ya-Chi, Gao, Wenzhi, Ye, Yinyu, Udell, Madeleine
This paper investigates the convergence properties of the hypergradient descent method (HDM), a 25-year-old heuristic originally proposed for adaptive stepsize selection in stochastic first-order methods. We provide the first rigorous convergence analysis of HDM using the online learning framework of [Gao24] and apply this analysis to develop new state-of-the-art adaptive gradient methods with empirical and theoretical support. Notably, HDM automatically identifies the optimal stepsize for the local optimization landscape and achieves local superlinear convergence. Our analysis explains the instability of HDM reported in the literature and proposes efficient strategies to address it. We also develop two HDM variants with heavy-ball and Nesterov momentum. Experiments on deterministic convex problems show HDM with heavy-ball momentum (HDM-HB) exhibits robust performance and significantly outperforms other adaptive first-order methods. Moreover, HDM-HB often matches the performance of L-BFGS, an efficient and practical quasi-Newton method, using less memory and cheaper iterations.
Gradient Methods with Online Scaling
Gao, Wenzhi, Chu, Ya-Chi, Ye, Yinyu, Udell, Madeleine
We introduce a framework to accelerate the convergence of gradient-based methods with online learning. The framework learns to scale the gradient at each iteration through an online learning algorithm and provably accelerates gradient-based methods asymptotically. In contrast with previous literature, where convergence is established based on worst-case analysis, our framework provides a strong convergence guarantee with respect to the optimal scaling matrix for the iteration trajectory. For smooth strongly convex optimization, our results provide an $O(\kappa^\star \log(1/\varepsilon)$) complexity result, where $\kappa^\star$ is the condition number achievable by the optimal preconditioner, improving on the previous $O(\sqrt{n}\kappa^\star \log(1/\varepsilon))$ result. In particular, a variant of our method achieves superlinear convergence on convex quadratics. For smooth convex optimization, we show for the first time that the widely-used hypergradient descent heuristic improves on the convergence of gradient descent.