Chu, Xu
Learnable Prompt as Pseudo-Imputation: Reassessing the Necessity of Traditional EHR Data Imputation in Downstream Clinical Prediction
Liao, Weibin, Zhu, Yinghao, Wang, Zixiang, Chu, Xu, Wang, Yasha, Ma, Liantao
Analyzing the health status of patients based on Electronic Health Records (EHR) is a fundamental research problem in medical informatics. The presence of extensive missing values in EHR makes it challenging for deep neural networks to directly model the patient's health status based on EHR. Existing deep learning training protocols require the use of statistical information or imputation models to reconstruct missing values; however, the protocols inject non-realistic data into downstream EHR analysis models, significantly limiting model performance. This paper introduces Learnable Prompt as Pseudo Imputation (PAI) as a new training protocol. PAI no longer introduces any imputed data but constructs a learnable prompt to model the implicit preferences of the downstream model for missing values, resulting in a significant performance improvement for all EHR analysis models. Additionally, our experiments show that PAI exhibits higher robustness in situations of data insufficiency and high missing rates. More importantly, in a real-world application involving cross-institutional data with zero-shot evaluation, PAI demonstrates stronger model generalization capabilities for non-overlapping features.
Infinite-Horizon Graph Filters: Leveraging Power Series to Enhance Sparse Information Aggregation
Zhang, Ruizhe, Jiang, Xinke, Fang, Yuchen, Luo, Jiayuan, Xu, Yongxin, Zhu, Yichen, Chu, Xu, Zhao, Junfeng, Wang, Yasha
Graph Neural Networks (GNNs) have shown considerable effectiveness in a variety of graph learning tasks, particularly those based on the message-passing approach in recent years. However, their performance is often constrained by a limited receptive field, a challenge that becomes more acute in the presence of sparse graphs. In light of the power series, which possesses infinite expansion capabilities, we propose a novel Graph Power Filter Neural Network (GPFN) that enhances node classification by employing a power series graph filter to augment the receptive field. Concretely, our GPFN designs a new way to build a graph filter with an infinite receptive field based on the convergence power series, which can be analyzed in the spectral and spatial domains. Besides, we theoretically prove that our GPFN is a general framework that can integrate any power series and capture long-range dependencies. Finally, experimental results on three datasets demonstrate the superiority of our GPFN over state-of-the-art baselines.
Imputation with Inter-Series Information from Prototypes for Irregular Sampled Time Series
Yu, Zhihao, Chu, Xu, Ma, Liantao, Wang, Yasha, Zhu, Wenwu
Irregularly sampled time series are ubiquitous, presenting significant challenges for analysis due to missing values. Despite existing methods address imputation, they predominantly focus on leveraging intra-series information, neglecting the potential benefits that inter-series information could provide, such as reducing uncertainty and memorization effect. To bridge this gap, we propose PRIME, a Prototype Recurrent Imputation ModEl, which integrates both intra-series and inter-series information for imputing missing values in irregularly sampled time series. Our framework comprises a prototype memory module for learning inter-series information, a bidirectional gated recurrent unit utilizing prototype information for imputation, and an attentive prototypical refinement module for adjusting imputations. We conducted extensive experiments on three datasets, and the results underscore PRIME's superiority over the state-of-the-art models by up to 26% relative improvement on mean square error.
Think and Retrieval: A Hypothesis Knowledge Graph Enhanced Medical Large Language Models
Jiang, Xinke, Zhang, Ruizhe, Xu, Yongxin, Qiu, Rihong, Fang, Yue, Wang, Zhiyuan, Tang, Jinyi, Ding, Hongxin, Chu, Xu, Zhao, Junfeng, Wang, Yasha
We explore how the rise of Large Language Models (LLMs) significantly impacts task performance in the field of Natural Language Processing. We focus on two strategies, Retrieval-Augmented Generation (RAG) and Fine-Tuning (FT), and propose the Hypothesis Knowledge Graph Enhanced (HyKGE) framework, leveraging a knowledge graph to enhance medical LLMs. By integrating LLMs and knowledge graphs, HyKGE demonstrates superior performance in addressing accuracy and interpretability challenges, presenting potential applications in the medical domain. Our evaluations using real-world datasets highlight HyKGE's superiority in providing accurate knowledge with precise confidence, particularly in complex and difficult scenarios. The code will be available until published.
DiffPrep: Differentiable Data Preprocessing Pipeline Search for Learning over Tabular Data
Li, Peng, Chen, Zhiyi, Chu, Xu, Rong, Kexin
Data preprocessing is a crucial step in the machine learning process that transforms raw data into a more usable format for downstream ML models. However, it can be costly and time-consuming, often requiring the expertise of domain experts. Existing automated machine learning (AutoML) frameworks claim to automate data preprocessing. However, they often use a restricted search space of data preprocessing pipelines which limits the potential performance gains, and they are often too slow as they require training the ML model multiple times. In this paper, we propose DiffPrep, a method that can automatically and efficiently search for a data preprocessing pipeline for a given tabular dataset and a differentiable ML model such that the performance of the ML model is maximized. We formalize the problem of data preprocessing pipeline search as a bi-level optimization problem. To solve this problem efficiently, we transform and relax the discrete, non-differential search space into a continuous and differentiable one, which allows us to perform the pipeline search using gradient descent with training the ML model only once. Our experiments show that DiffPrep achieves the best test accuracy on 15 out of the 18 real-world datasets evaluated and improves the model's test accuracy by up to 6.6 percentage points.
Learning Hyper Label Model for Programmatic Weak Supervision
Wu, Renzhi, Chen, Shen-En, Zhang, Jieyu, Chu, Xu
To reduce the human annotation efforts, the programmatic weak supervision (PWS) paradigm abstracts weak supervision sources as labeling functions (LFs) and involves a label model to aggregate the output of multiple LFs to produce training labels. Most existing label models require a parameter learning step for each dataset. In this work, we present a hyper label model that (once learned) infers the ground-truth labels for each dataset in a single forward pass without dataset-specific parameter learning. The hyper label model approximates an optimal analytical (yet computationally intractable) solution of the ground-truth labels. We train the model on synthetic data generated in the way that ensures the model approximates the analytical optimal solution, and build the model upon Graph Neural Network (GNN) to ensure the model prediction being invariant (or equivariant) to the permutation of LFs (or data points). On 14 real-world datasets, our hyper label model outperforms the best existing methods in both accuracy (by 1.4 points on average) and efficiency (by six times on average). Our code is available at https://github.com/wurenzhi/hyper_label_model
Nearest Neighbor Classifiers over Incomplete Information: From Certain Answers to Certain Predictions
Karlaลก, Bojan, Li, Peng, Wu, Renzhi, Gรผrel, Nezihe Merve, Chu, Xu, Wu, Wentao, Zhang, Ce
Machine learning (ML) applications have been thriving recently, largely attributed to the increasing availability of data. However, inconsistency and incomplete information are ubiquitous in real-world datasets, and their impact on ML applications remains elusive. In this paper, we present a formal study of this impact by extending the notion of Certain Answers for Codd tables, which has been explored by the database research community for decades, into the field of machine learning. Specifically, we focus on classification problems and propose the notion of "Certain Predictions" (CP) -- a test data example can be certainly predicted (CP'ed) if all possible classifiers trained on top of all possible worlds induced by the incompleteness of data would yield the same prediction. We study two fundamental CP queries: (Q1) checking query that determines whether a data example can be CP'ed; and (Q2) counting query that computes the number of classifiers that support a particular prediction (i.e., label). Given that general solutions to CP queries are, not surprisingly, hard without assumption over the type of classifier, we further present a case study in the context of nearest neighbor (NN) classifiers, where efficient solutions to CP queries can be developed -- we show that it is possible to answer both queries in linear or polynomial time over exponentially many possible worlds. We demonstrate one example use case of CP in the important application of "data cleaning for machine learning (DC for ML)." We show that our proposed CPClean approach built based on CP can often significantly outperform existing techniques in terms of classification accuracy with mild manual cleaning effort.
Multi-Label Robust Factorization Autoencoder and its Application in Predicting Drug-Drug Interactions
Chu, Xu, Lin, Yang, Gao, Jingyue, Wang, Jiangtao, Wang, Yasha, Wang, Leye
Drug-drug interactions (DDIs) are a major cause of preventable hospitalizations and deaths. Predicting the occurrence of DDIs helps drug safety professionals allocate investigative resources and take appropriate regulatory action promptly. Traditional DDI prediction methods predict DDIs based on the similarity between drugs. Recently, researchers revealed that predictive performance can be improved by better modeling the interactions between drug pairs with bilinear forms. However, the shallow models leveraging bilinear forms suffer from limitations on capturing complicated nonlinear interactions between drug pairs. To this end, we propose Multi-Label Robust Factorization Autoencoder (abbreviated to MuLFA) for DDI prediction, which learns a representation of interactions between drug pairs and has the capability of characterizing complicated nonlinear interactions more precisely. Moreover, a novel loss called CuXCov is designed to effectively learn the parameters of MuLFA. Furthermore, the decoder is able to generate high-risk chemical structures of drug pairs for specific DDIs, assisting pharmacists to better understand the relationship between drug chemistry and DDI. Experimental results on real-world datasets demonstrate that MuLFA consistently outperforms state-of-the-art methods; particularly, it increases 21:3% predictive performance compared to the best baseline for top 50 frequent DDIs.We also illustrate various case studies to demonstrate the efficacy of the chemical structures generated by MuLFA in DDI diagnosis.