Goto

Collaborating Authors

 Chu, Xiangyu


Learning to Hop for a Single-Legged Robot with Parallel Mechanism

arXiv.org Artificial Intelligence

This work presents the application of reinforcement learning to improve the performance of a highly dynamic hopping system with a parallel mechanism. Unlike serial mechanisms, parallel mechanisms can not be accurately simulated due to the complexity of their kinematic constraints and closed-loop structures. Besides, learning to hop suffers from prolonged aerial phase and the sparse nature of the rewards. To address them, we propose a learning framework to encode long-history feedback to account for the under-actuation brought by the prolonged aerial phase. In the proposed framework, we also introduce a simplified serial configuration for the parallel design to avoid directly simulating parallel structure during the training. A torque-level conversion is designed to deal with the parallel-serial conversion to handle the sim-to-real issue. Simulation and hardware experiments have been conducted to validate this framework.


DOFS: A Real-world 3D Deformable Object Dataset with Full Spatial Information for Dynamics Model Learning

arXiv.org Artificial Intelligence

Robot manipulation of 3D Deformable Objects is essential for many activities and applications in the real world, such as household [1, 2] and healthcare [3], and is still an open challenge despite extensive studies. Recently, data-driven solutions have shown impressive and promising results in 3D deformable object manipulation by learning-based approaches [4, 5], where sufficient data is essential to improve model training or policy learning. To obtain training data, some previous works collected synthetic data from simulators [6]. Still, there is an unavoidable gap between the real world and the simulator since the existing simulators cannot accurately simulate all real-world physical characteristics (e.g., friction, impact, and stiffness) [7]. To mitigate the gap, some researchers [8, 9, 10, 11] collect Real-World Data (RWD); for example, [8, 9] collects RGB-D images and point clouds, [10] collects 3D mesh models, [11] uses a professional system with 106 cameras to obtain the 3D reconstructions of deformed mesh.


Interactive Navigation in Environments with Traversable Obstacles Using Large Language and Vision-Language Models

arXiv.org Artificial Intelligence

This paper proposes an interactive navigation framework by using large language and vision-language models, allowing robots to navigate in environments with traversable obstacles. We utilize the large language model (GPT-3.5) and the open-set Vision-language Model (Grounding DINO) to create an action-aware costmap to perform effective path planning without fine-tuning. With the large models, we can achieve an end-to-end system from textual instructions like "Can you pass through the curtains to deliver medicines to me?", to bounding boxes (e.g., curtains) with action-aware attributes. They can be used to segment LiDAR point clouds into two parts: traversable and untraversable parts, and then an action-aware costmap is constructed for generating a feasible path. The pre-trained large models have great generalization ability and do not require additional annotated data for training, allowing fast deployment in the interactive navigation tasks. We choose to use multiple traversable objects such as curtains and grasses for verification by instructing the robot to traverse them. Besides, traversing curtains in a medical scenario was tested. All experimental results demonstrated the proposed framework's effectiveness and adaptability to diverse environments.


Bootstrapping Robotic Skill Learning With Intuitive Teleoperation: Initial Feasibility Study

arXiv.org Artificial Intelligence

Robotic skill learning has been increasingly studied but the demonstration collections are more challenging compared to collecting images/videos in computer vision and texts in natural language processing. This paper presents a skill learning paradigm by using intuitive teleoperation devices to generate high-quality human demonstrations efficiently for robotic skill learning in a data-driven manner. By using a reliable teleoperation interface, the da Vinci Research Kit (dVRK) master, a system called dVRK-Simulator-for-Demonstration (dS4D) is proposed in this paper. Various manipulation tasks show the system's effectiveness and advantages in efficiency compared to other interfaces. Using the collected data for policy learning has been investigated, which verifies the initial feasibility. We believe the proposed paradigm can facilitate robot learning driven by high-quality demonstrations and efficiency while generating them.


End-to-End Learning of Deep Visuomotor Policy for Needle Picking

arXiv.org Artificial Intelligence

Needle picking is a challenging manipulation task in robot-assisted surgery due to the characteristics of small slender shapes of needles, needles' variations in shapes and sizes, and demands for millimeter-level control. Prior works, heavily relying on the prior of needles (e.g., geometric models), are hard to scale to unseen needles' variations. In this paper, we present the first end-to-end learning method to train deep visuomotor policy for needle picking. Concretely, we propose DreamerfD to maximally leverage demonstrations to improve the learning efficiency of a state-of-the-art model-based reinforcement learning method, DreamerV2; Since Variational Auto-Encoder (VAE) in DreamerV2 is difficult to scale to high-resolution images, we propose Dynamic Spotlight Adaptation to represent control-related visual signals in a low-resolution image space; Virtual Clutch is also proposed to reduce performance degradation due to significant error between prior and posterior encoded states at the beginning of a rollout. We conducted extensive experiments in simulation to evaluate the performance, robustness, in-domain variation adaptation, and effectiveness of individual components of our method. Our method, trained by 8k demonstration timesteps and 140k online policy timesteps, can achieve a remarkable success rate of 80%. Furthermore, our method effectively demonstrated its superiority in generalization to unseen in-domain variations including needle variations and image disturbance, highlighting its robustness and versatility. Codes and videos are available at https://sites.google.com/view/DreamerfD.


Inequality Constrained Trajectory Optimization with A Hybrid Multiple-shooting iLQR

arXiv.org Artificial Intelligence

Trajectory optimization has been used extensively in robotic systems. In particular, iterative Linear Quadratic Regulator (iLQR) has performed well as an off-line planner and online nonlinear model predictive control solver, with a lower computational cost. However, standard iLQR cannot handle any constraints or perform reasonable initialization of a state trajectory. In this paper, we propose a hybrid constrained iLQR variant with a multiple-shooting framework to incorporate general inequality constraints and infeasible states initialization. The main technical contributions are twofold: 1) In addition to inheriting the simplicity of the initialization in multiple-shooting settings, a two-stage framework is developed to deal with state and/or control constraints robustly without loss of the linear feedback term of iLQR. Such a hybrid strategy offers fast convergence of constraint satisfaction. 2) An improved globalization strategy is proposed to exploit the coupled effects between line-searching and regularization, which is able to enhance the numerical robustness of the constrained iLQR approaches. Our approach is tested on various constrained trajectory optimization problems and outperforms the commonly-used collocation and shooting methods.


Towards Safe Landing of Falling Quadruped Robots Using a 3-DoF Morphable Inertial Tail

arXiv.org Artificial Intelligence

Falling cat problem is well-known where cats show their super aerial reorientation capability and can land safely. For their robotic counterparts, a similar falling quadruped robot problem, has not been fully addressed, although achieving safe landing as the cats has been increasingly investigated. Unlike imposing the burden on landing control, we approach to safe landing of falling quadruped robots by effective flight phase control. Different from existing work like swinging legs and attaching reaction wheels or simple tails, we propose to deploy a 3-DoF morphable inertial tail on a medium-size quadruped robot. In the flight phase, the tail with its maximum length can self-right the body orientation in 3D effectively; before touch-down, the tail length can be retracted to about 1/4 of its maximum for impressing the tail's side-effect on landing. To enable aerial reorientation for safe landing in the quadruped robots, we design a control architecture, which has been verified in a high-fidelity physics simulation environment with different initial conditions. Experimental results on a customized flight-phase test platform with comparable inertial properties are provided and show the tail's effectiveness on 3D body reorientation and its fast retractability before touch-down. An initial falling quadruped robot experiment is shown, where the robot Unitree A1 with the 3-DoF tail can land safely subject to non-negligible initial body angles.