Chu, Wei
Guess What I am Thinking: A Benchmark for Inner Thought Reasoning of Role-Playing Language Agents
Xu, Rui, Wang, MingYu, Wang, XinTao, Lu, Dakuan, Tan, Xiaoyu, Chu, Wei, Xu, Yinghui
Recent advances in LLM-based role-playing language agents (RPLAs) have attracted broad attention in various applications. While chain-of-thought reasoning has shown importance in many tasks for LLMs, the internal thinking processes of RPLAs remain unexplored. Understanding characters' inner thoughts is crucial for developing advanced RPLAs. In this paper, we introduce ROLETHINK, a novel benchmark constructed from literature for evaluating character thought generation. We propose the task of inner thought reasoning, which includes two sets: the gold set that compares generated thoughts with original character monologues, and the silver set that uses expert synthesized character analyses as references. To address this challenge, we propose MIRROR, a chain-of-thought approach that generates character thoughts by retrieving memories, predicting character reactions, and synthesizing motivations. Through extensive experiments, we demonstrate the importance of inner thought reasoning for RPLAs, and MIRROR consistently outperforms existing methods. Resources are available at https://github.com/airaer1998/RPA_Thought.
Keywords and Instances: A Hierarchical Contrastive Learning Framework Unifying Hybrid Granularities for Text Generation
Li, Mingzhe, Lin, XieXiong, Chen, Xiuying, Chang, Jinxiong, Zhang, Qishen, Wang, Feng, Wang, Taifeng, Liu, Zhongyi, Chu, Wei, Zhao, Dongyan, Yan, Rui
Contrastive learning has achieved impressive success in generation tasks to militate the "exposure bias" problem and discriminatively exploit the different quality of references. Existing works mostly focus on contrastive learning on the instance-level without discriminating the contribution of each word, while keywords are the gist of the text and dominant the constrained mapping relationships. Hence, in this work, we propose a hierarchical contrastive learning mechanism, which can unify hybrid granularities semantic meaning in the input text. Concretely, we first propose a keyword graph via contrastive correlations of positive-negative pairs to iteratively polish the keyword representations. Then, we construct intra-contrasts within instance-level and keyword-level, where we assume words are sampled nodes from a sentence distribution. Finally, to bridge the gap between independent contrast levels and tackle the common contrast vanishing problem, we propose an inter-contrast mechanism that measures the discrepancy between contrastive keyword nodes respectively to the instance distribution. Experiments demonstrate that our model outperforms competitive baselines on paraphrasing, dialogue generation, and storytelling tasks.
AURORA:Automated Training Framework of Universal Process Reward Models via Ensemble Prompting and Reverse Verification
Tan, Xiaoyu, Yao, Tianchu, Qu, Chao, Li, Bin, Yang, Minghao, Lu, Dakuan, Wang, Haozhe, Qiu, Xihe, Chu, Wei, Xu, Yinghui, Qi, Yuan
The reasoning capabilities of advanced large language models (LLMs) like o1 have revolutionized artificial intelligence applications. Nevertheless, evaluating and optimizing complex reasoning processes remain significant challenges due to diverse policy distributions and the inherent limitations of human effort and accuracy. In this paper, we present AURORA, a novel automated framework for training universal process reward models (PRMs) using ensemble prompting and reverse verification. The framework employs a two-phase approach: First, it uses diverse prompting strategies and ensemble methods to perform automated annotation and evaluation of processes, ensuring robust assessments for reward learning. Second, it leverages practical reference answers for reverse verification, enhancing the model's ability to validate outputs and improving training accuracy. To assess the framework's performance, we extend beyond the existing ProcessBench benchmark by introducing UniversalBench, which evaluates reward predictions across full trajectories under diverse policy distribtion with long Chain-of-Thought (CoT) outputs. Experimental results demonstrate that AURORA enhances process evaluation accuracy, improves PRMs' accuracy for diverse policy distributions and long-CoT responses. The project will be open-sourced at https://auroraprm.github.io/. The Universal-PRM-7B is available at https://huggingface.co/infly/Universal-PRM-7B.
Learning Autonomous Code Integration for Math Language Models
Wang, Haozhe, Li, Long, Qu, Chao, Zhu, Fengming, Xu, Weidi, Chu, Wei, Lin, Fangzhen
Recent advances in mathematical problem-solving with language models (LMs) integrate chain-of-thought (CoT) reasoning and code execution to harness their complementary strengths. However, existing hybrid frameworks exhibit a critical limitation: they depend on externally dictated instructions or rigid code-integration templates, lacking metacognitive awareness -- the capacity to dynamically evaluate intrinsic capabilities and autonomously determine when and how to integrate tools. This rigidity motivates our study of autonomous code integration, enabling models to adapt tool-usage strategies as their reasoning abilities evolve during training. While reinforcement learning (RL) shows promise for boosting LLM reasoning at scale (e.g., DeepSeek-R1), we demonstrate its inefficiency in learning autonomous code integration due to inadequate exploration of the vast combinatorial space of CoT-code interleaving patterns. To address this challenge, we propose a novel Expectation-Maximization (EM) framework that synergizes structured exploration (E-step) with off-policy RL optimization (M-step), creating a self-reinforcing cycle between metacognitive tool-use decisions and evolving capabilities. Experiments reveal our method achieves superior results through improved exploration. Notably, our 7B model improves over 11% on MATH500 and 9.4% on AIME without o1-like CoT.
SCP-116K: A High-Quality Problem-Solution Dataset and a Generalized Pipeline for Automated Extraction in the Higher Education Science Domain
Lu, Dakuan, Tan, Xiaoyu, Xu, Rui, Yao, Tianchu, Qu, Chao, Chu, Wei, Xu, Yinghui, Qi, Yuan
Recent breakthroughs in large language models (LLMs) exemplified by the impressive mathematical and scientific reasoning capabilities of the o1 model have spotlighted the critical importance of high-quality training data in advancing LLM performance across STEM disciplines. While the mathematics community has benefited from a growing body of curated datasets, the scientific domain at the higher education level has long suffered from a scarcity of comparable resources. To address this gap, we present SCP-116K, a new large-scale dataset of 116,756 high-quality problem-solution pairs, automatically extracted from heterogeneous sources using a streamlined and highly generalizable pipeline. Our approach involves stringent filtering to ensure the scientific rigor and educational level of the extracted materials, while maintaining adaptability for future expansions or domain transfers. By openly releasing both the dataset and the extraction pipeline, we seek to foster research on scientific reasoning, enable comprehensive performance evaluations of new LLMs, and lower the barrier to replicating the successes of advanced models like o1 in the broader science community. We believe SCP-116K will serve as a critical resource, catalyzing progress in high-level scientific reasoning tasks and promoting further innovations in LLM development. The dataset and code are publicly available at https://github.com/AQA6666/SCP-116K-open.
An Attentive Dual-Encoder Framework Leveraging Multimodal Visual and Semantic Information for Automatic OSAHS Diagnosis
Wei, Yingchen, Qiu, Xihe, Tan, Xiaoyu, Huang, Jingjing, Chu, Wei, Xu, Yinghui, Qi, Yuan
Obstructive sleep apnea-hypopnea syndrome (OSAHS) [1] Our key contributions are as follows: (1) Introducing VTA-affects about 27% of adults [2], causing poor sleep, daytime OSAHS, a multimodal framework for diagnosing OSAHS dysfunction, and higher risks of cardiovascular diseases and diabetes severity by combining visual and language data, and using [3]. The standard diagnostic method, polysomnography a pre-trained language model to extract key information from (PSG) [4], is complex, costly, and uncomfortable, requiring basic physiological data for improved classification accuracy; multi-channel monitoring (EEG, ECG, heart rate [5]) and (2) Developing a visual encoder that focuses on specific facial trained technicians (Figure 1). Data-driven methods for automated features associated with OSAHS, employing attention mesh OSAHS diagnosis can improve efficiency and reduce and stochastic gates for better clinical decision alignment; (3) costs. Facial features like a flat nasal bridge, wide jawbone, Implementing a data pre-processing strategy to handle imbalanced thick neck, and mandibular retrognathia correlate with OSAHS samples and ordinal classification, using randomOver-severity [6], providing visual indicators of airway obstruction Sampler (ROS) [17] and an ordinal regression loss function and sleep disturbances. Deep learning can analyze these features [18] to enhance accuracy and robustness; (4) Demonstrating for early diagnosis and personalized treatment.
OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models
Huang, Siming, Cheng, Tianhao, Liu, J. K., Hao, Jiaran, Song, Liuyihan, Xu, Yang, Yang, J., Liu, J. H., Zhang, Chenchen, Chai, Linzheng, Yuan, Ruifeng, Zhang, Zhaoxiang, Fu, Jie, Liu, Qian, Zhang, Ge, Wang, Zili, Qi, Yuan, Xu, Yinghui, Chu, Wei
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems. While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs suitable for rigorous scientific investigation, particularly those with reproducible data processing pipelines and transparent training protocols, remain limited. The scarcity is due to various challenges, including resource constraints, ethical considerations, and the competitive advantages of keeping models advanced. To address the gap, we introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community. Unlike most prior efforts, we release not only model weights and inference code, but also the reproducible training data, complete data processing pipeline, rigorous experimental ablation results, and detailed training protocols for open scientific research. Through this comprehensive release, we identify the key ingredients for building a top-tier code LLM: (1) code optimized heuristic rules for data cleaning and methods for data deduplication, (2) recall of text corpus related to code and (3) high-quality synthetic data in both annealing and supervised fine-tuning stages. By offering this level of openness, we aim to broaden access to all aspects of a top-tier code LLM, with OpenCoder serving as both a powerful model and an open foundation to accelerate research, and enable reproducible advancements in code AI.
Struct-X: Enhancing Large Language Models Reasoning with Structured Data
Tan, Xiaoyu, Wang, Haoyu, Qiu, Xihe, Cheng, Yuan, Xu, Yinghui, Chu, Wei, Qi, Yuan
Structured data, rich in logical and relational information, has the potential to enhance the reasoning abilities of large language models (LLMs). Still, its integration poses a challenge due to the risk of overwhelming LLMs with excessive tokens and irrelevant context information. To address this, we propose Struct-X, a novel framework that operates through five key phases: ``read-model-fill-reflect-reason'' efficiently enabling LLMs to utilize structured data. It begins by encoding structured data into a topological space using graph embeddings, followed by filling in missing entity information with knowledge retrieval modules, and filtering out irrelevant tokens via a self-supervised module. The final phase involves constructing a topological network with selected tokens to further reduce the total token length for more effective LLM inference. Additionally, Struct-X includes an Auxiliary Module trained to generate prompts, aiding LLMs in analyzing structured data. Extensive experiments on benchmarks, including the knowledge graph question-answer task and the long document reading comprehension task, show that Struct-X notably improves LLM reasoning, demonstrating the effectiveness of structured data augmentation in improving LLM inference with complex input context.
Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models
Qiu, Xihe, Wang, Haoyu, Tan, Xiaoyu, Qu, Chao, Xiong, Yujie, Cheng, Yuan, Xu, Yinghui, Chu, Wei, Qi, Yuan
Effective collaboration in multi-agent systems requires communicating goals and intentions between agents. Current agent frameworks often suffer from dependencies on single-agent execution and lack robust inter-module communication, frequently leading to suboptimal multi-agent reinforcement learning (MARL) policies and inadequate task coordination. To address these challenges, we present a framework for training large language models (LLMs) as collaborative agents to enable coordinated behaviors in cooperative MARL. Each agent maintains a private intention consisting of its current goal and associated sub-tasks. Agents broadcast their intentions periodically, allowing other agents to infer coordination tasks. A propagation network transforms broadcast intentions into teammate-specific communication messages, sharing relevant goals with designated teammates. The architecture of our framework is structured into planning, grounding, and execution modules. During execution, multiple agents interact in a downstream environment and communicate intentions to enable coordinated behaviors. The grounding module dynamically adapts comprehension strategies based on emerging coordination patterns, while feedback from execution agents influnces the planning module, enabling the dynamic re-planning of sub-tasks. Results in collaborative environment simulation demonstrate intention propagation reduces miscoordination errors by aligning sub-task dependencies between agents. Agents learn when to communicate intentions and which teammates require task details, resulting in emergent coordinated behaviors. This demonstrates the efficacy of intention sharing for cooperative multi-agent RL based on LLMs.
MINDECHO: Role-Playing Language Agents for Key Opinion Leaders
Xu, Rui, Lu, Dakuan, Tan, Xiaoyu, Wang, Xintao, Yuan, Siyu, Chen, Jiangjie, Chu, Wei, Yinghui, Xu
Large language models~(LLMs) have demonstrated impressive performance in various applications, among which role-playing language agents (RPLAs) have engaged a broad user base. Now, there is a growing demand for RPLAs that represent Key Opinion Leaders (KOLs), \ie, Internet celebrities who shape the trends and opinions in their domains. However, research in this line remains underexplored. In this paper, we hence introduce MINDECHO, a comprehensive framework for the development and evaluation of KOL RPLAs. MINDECHO collects KOL data from Internet video transcripts in various professional fields, and synthesizes their conversations leveraging GPT-4. Then, the conversations and the transcripts are used for individualized model training and inference-time retrieval, respectively. Our evaluation covers both general dimensions (\ie, knowledge and tones) and fan-centric dimensions for KOLs. Extensive experiments validate the effectiveness of MINDECHO in developing and evaluating KOL RPLAs.