Goto

Collaborating Authors

 Chronis, Christos


Entity Extraction from High-Level Corruption Schemes via Large Language Models

arXiv.org Artificial Intelligence

The rise of financial crime that has been observed in recent years has created an increasing concern around the topic and many people, organizations and governments are more and more frequently trying to combat it. Despite the increase of interest in this area, there is a lack of specialized datasets that can be used to train and evaluate works that try to tackle those problems. This article proposes a new micro-benchmark dataset for algorithms and models that identify individuals and organizations, and their multiple writings, in news articles, and presents an approach that assists in its creation. Experimental efforts are also reported, using this dataset, to identify individuals and organizations in financial-crime-related articles using various low-billion parameter Large Language Models (LLMs). For these experiments, standard metrics (Accuracy, Precision, Recall, F1 Score) are reported and various prompt variants comprising the best practices of prompt engineering are tested. In addition, to address the problem of ambiguous entity mentions, a simple, yet effective LLM-based disambiguation method is proposed, ensuring that the evaluation aligns with reality. Finally, the proposed approach is compared against a widely used state-of-the-art open-source baseline, showing the superiority of the proposed method.


AI-as-a-Service Toolkit for Human-Centered Intelligence in Autonomous Driving

arXiv.org Artificial Intelligence

This paper presents a proof-of-concept implementation of the AI-as-a-Service toolkit developed within the H2020 TEACHING project and designed to implement an autonomous driving personalization system according to the output of an automatic driver's stress recognition algorithm, both of them realizing a Cyber-Physical System of Systems. In addition, we implemented a data-gathering subsystem to collect data from different sensors, i.e., wearables and cameras, to automatize stress recognition. The system was attached for testing to a driving simulation software, CARLA, which allows testing the approach's feasibility with minimum cost and without putting at risk drivers and passengers. At the core of the relative subsystems, different learning algorithms were implemented using Deep Neural Networks, Recurrent Neural Networks, and Reinforcement Learning.


The emergence of Explainability of Intelligent Systems: Delivering Explainable and Personalised Recommendations for Energy Efficiency

arXiv.org Artificial Intelligence

The recent advances in artificial intelligence namely in machine learning and deep learning, have boosted the performance of intelligent systems in several ways. This gave rise to human expectations, but also created the need for a deeper understanding of how intelligent systems think and decide. The concept of explainability appeared, in the extent of explaining the internal system mechanics in human terms. Recommendation systems are intelligent systems that support human decision making, and as such, they have to be explainable in order to increase user trust and improve the acceptance of recommendations. In this work, we focus on a context-aware recommendation system for energy efficiency and develop a mechanism for explainable and persuasive recommendations, which are personalized to user preferences and habits. The persuasive facts either emphasize on the economical saving prospects (Econ) or on a positive ecological impact (Eco) and explanations provide the reason for recommending an energy saving action. Based on a study conducted using a Telegram bot, different scenarios have been validated with actual data and human feedback. Current results show a total increase of 19\% on the recommendation acceptance ratio when both economical and ecological persuasive facts are employed. This revolutionary approach on recommendation systems, demonstrates how intelligent recommendations can effectively encourage energy saving behavior.