Goto

Collaborating Authors

 Christopher Morris


Hierarchical Graph Representation Learning with Differentiable Pooling

Neural Information Processing Systems

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs--a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph.


Hierarchical Graph Representation Learning with Differentiable Pooling

Neural Information Processing Systems

Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs--a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph.