Chowdhury, Shreyan
Are we describing the same sound? An analysis of word embedding spaces of expressive piano performance
Peter, Silvan David, Chowdhury, Shreyan, Cancino-Chacón, Carlos Eduardo, Widmer, Gerhard
Semantic embeddings play a crucial role in natural language-based information retrieval. Embedding models represent words and contexts as vectors whose spatial configuration is derived from the distribution of words in large text corpora. While such representations are generally very powerful, they might fail to account for fine-grained domain-specific nuances. In this article, we investigate this uncertainty for the domain of characterizations of expressive piano performance. Using a music research dataset of free text performance characterizations and a follow-up study sorting the annotations into clusters, we derive a ground truth for a domain-specific semantic similarity structure. We test five embedding models and their similarity structure for correspondence with the ground truth. We further assess the effects of contextualizing prompts, hubness reduction, cross-modal similarity, and k-means clustering. The quality of embedding models shows great variability with respect to this task; more general models perform better than domain-adapted ones and the best model configurations reach human-level agreement.
Towards Explainable Music Emotion Recognition: The Route via Mid-level Features
Chowdhury, Shreyan, Vall, Andreu, Haunschmid, Verena, Widmer, Gerhard
Emotional aspects play an important part in our interaction with music. However, modelling these aspects in MIR systems have been notoriously challenging since emotion is an inherently abstract and subjective experience, thus making it difficult to quantify or predict in the first place, and to make sense of the predictions in the next. In an attempt to create a model that can give a musically meaningful and intuitive explanation for its predictions, we propose a VGG-style deep neural network that learns to predict emotional characteristics of a musical piece together with (and based on) human-interpretable, mid-level perceptual features. We compare this to predicting emotion directly with an identical network that does not take into account the mid-level features and observe that the loss in predictive performance of going through the mid-level features is surprisingly low, on average. The design of our network allows us to visualize the effects of perceptual features on individual emotion predictions, and we argue that the small loss in performance in going through the mid-level features is justified by the gain in explainability of the predictions.