Chowdhury, Mashrur
Graph-Powered Defense: Controller Area Network Intrusion Detection for Unmanned Aerial Vehicles
Majumder, Reek, Comert, Gurcan, Werth, David, Gale, Adrian, Chowdhury, Mashrur, Salek, M Sabbir
The network of services, including delivery, farming, and environmental monitoring, has experienced exponential expansion in the past decade with Unmanned Aerial Vehicles (UAVs). Yet, UAVs are not robust enough against cyberattacks, especially on the Controller Area Network (CAN) bus. The CAN bus is a general-purpose vehicle-bus standard to enable microcontrollers and in-vehicle computers to interact, primarily connecting different Electronic Control Units (ECUs). In this study, we focus on solving some of the most critical security weaknesses in UAVs by developing a novel graph-based intrusion detection system (IDS) leveraging the Uncomplicated Application-level Vehicular Communication and Networking (UAVCAN) protocol. First, we decode CAN messages based on UAVCAN protocol specification; second, we present a comprehensive method of transforming tabular UAVCAN messages into graph structures. Lastly, we apply various graph-based machine learning models for detecting cyber-attacks on the CAN bus, including graph convolutional neural networks (GCNNs), graph attention networks (GATs), Graph Sample and Aggregate Networks (GraphSAGE), and graph structure-based transformers. Our findings show that inductive models such as GATs, GraphSAGE, and graph-based transformers can achieve competitive and even better accuracy than transductive models like GCNNs in detecting various types of intrusions, with minimum information on protocol specification, thus providing a generic robust solution for CAN bus security for the UAVs. We also compared our results with baseline single-layer Long Short-Term Memory (LSTM) and found that all our graph-based models perform better without using any decoded features based on the UAVCAN protocol, highlighting higher detection performance with protocol-independent capability.
Crash Severity Risk Modeling Strategies under Data Imbalance
Mamun, Abdullah Al, Enan, Abyad, Indah, Debbie A., Mwakalonge, Judith, Comert, Gurcan, Chowdhury, Mashrur
This study investigates crash severity risk modeling strategies for work zones involving large vehicles (i.e., trucks, buses, and vans) when there are crash data imbalance between low-severity (LS) and high-severity (HS) crashes. We utilized crash data, involving large vehicles in South Carolina work zones for the period between 2014 and 2018, which included 4 times more LS crashes compared to HS crashes. The objective of this study is to explore crash severity prediction performance of various models under different feature selection and data balancing techniques. The findings of this study highlight a disparity between LS and HS predictions, with less-accurate prediction of HS crashes compared to LS crashes due to class imbalance and feature overlaps between LS and HS crashes. Combining features from multiple feature selection techniques: statistical correlation, feature importance, recursive elimination, statistical tests, and mutual information, slightly improves HS crash prediction performance. Data balancing techniques such as NearMiss-1 and RandomUnderSampler, maximize HS recall when paired with certain prediction models, such as Bayesian Mixed Logit (BML), NeuralNet, and RandomForest, making them suitable for HS crash prediction. Conversely, RandomOverSampler, HS Class Weighting, and Kernel-based Synthetic Minority Oversampling (K-SMOTE), used with certain prediction models such as BML, CatBoost, and LightGBM, achieve a balanced performance, defined as achieving an equitable trade-off between LS and HS prediction performance metrics. These insights provide safety analysts with guidance to select models, feature selection techniques, and data balancing techniques that align with their specific safety objectives, offering a robust foundation for enhancing work-zone crash severity prediction.
A Hybrid Quantum-Classical AI-Based Detection Strategy for Generative Adversarial Network-Based Deepfake Attacks on an Autonomous Vehicle Traffic Sign Classification System
Salek, M Sabbir, Li, Shaozhi, Chowdhury, Mashrur
The perception module in autonomous vehicles (AVs) relies heavily on deep learning-based models to detect and identify various objects in their surrounding environment. An AV traffic sign classification system is integral to this module, which helps AVs recognize roadway traffic signs. However, adversarial attacks, in which an attacker modifies or alters the image captured for traffic sign recognition, could lead an AV to misrecognize the traffic signs and cause hazardous consequences. Deepfake presents itself as a promising technology to be used for such adversarial attacks, in which a deepfake traffic sign would replace a real-world traffic sign image before the image is fed to the AV traffic sign classification system. In this study, the authors present how a generative adversarial network-based deepfake attack can be crafted to fool the AV traffic sign classification systems. The authors developed a deepfake traffic sign image detection strategy leveraging hybrid quantum-classical neural networks (NNs). This hybrid approach utilizes amplitude encoding to represent the features of an input traffic sign image using quantum states, which substantially reduces the memory requirement compared to its classical counterparts. The authors evaluated this hybrid deepfake detection approach along with several baseline classical convolutional NNs on real-world and deepfake traffic sign images. The results indicate that the hybrid quantum-classical NNs for deepfake detection could achieve similar or higher performance than the baseline classical convolutional NNs in most cases while requiring less than one-third of the memory required by the shallowest classical convolutional NN considered in this study.
AR-GAN: Generative Adversarial Network-Based Defense Method Against Adversarial Attacks on the Traffic Sign Classification System of Autonomous Vehicles
Salek, M Sabbir, Mamun, Abdullah Al, Chowdhury, Mashrur
This study developed a generative adversarial network (GAN)-based defense method for traffic sign classification in an autonomous vehicle (AV), referred to as the attack-resilient GAN (AR-GAN). The novelty of the AR-GAN lies in (i) assuming zero knowledge of adversarial attack models and samples and (ii) providing consistently high traffic sign classification performance under various adversarial attack types. The AR-GAN classification system consists of a generator that denoises an image by reconstruction, and a classifier that classifies the reconstructed image. The authors have tested the AR-GAN under no-attack and under various adversarial attacks, such as Fast Gradient Sign Method (FGSM), DeepFool, Carlini and Wagner (C&W), and Projected Gradient Descent (PGD). The authors considered two forms of these attacks, i.e., (i) black-box attacks (assuming the attackers possess no prior knowledge of the classifier), and (ii) white-box attacks (assuming the attackers possess full knowledge of the classifier). The classification performance of the AR-GAN was compared with several benchmark adversarial defense methods. The results showed that both the AR-GAN and the benchmark defense methods are resilient against black-box attacks and could achieve similar classification performance to that of the unperturbed images. However, for all the white-box attacks considered in this study, the AR-GAN method outperformed the benchmark defense methods. In addition, the AR-GAN was able to maintain its high classification performance under varied white-box adversarial perturbation magnitudes, whereas the performance of the other defense methods dropped abruptly at increased perturbation magnitudes.
Development and Evaluation of Ensemble Learning-based Environmental Methane Detection and Intensity Prediction Models
Majumder, Reek, Pollard, Jacquan, Salek, M Sabbir, Werth, David, Comert, Gurcan, Gale, Adrian, Khan, Sakib Mahmud, Darko, Samuel, Chowdhury, Mashrur
The environmental impacts of global warming driven by methane (CH4) emissions have catalyzed significant research initiatives in developing novel technologies that enable proactive and rapid detection of CH4. Several data-driven machine learning (ML) models were tested to determine how well they identified fugitive CH4 and its related intensity in the affected areas. Various meteorological characteristics, including wind speed, temperature, pressure, relative humidity, water vapor, and heat flux, were included in the simulation. We used the ensemble learning method to determine the best-performing weighted ensemble ML models built upon several weaker lower-layer ML models to (i) detect the presence of CH4 as a classification problem and (ii) predict the intensity of CH4 as a regression problem.
Hybrid Quantum-Classical Neural Network for Cloud-supported In-Vehicle Cyberattack Detection
Islam, Mhafuzul, Chowdhury, Mashrur, Khan, Zadid, Khan, Sakib Mahmud
A classical computer works with ones and zeros, whereas a quantum computer uses ones, zeros, and superpositions of ones and zeros, which enables quantum computers to perform a vast number of calculations simultaneously compared to classical computers. In a cloud-supported cyber-physical system environment, running a machine learning application in quantum computers is often difficult, due to the existing limitations of the current quantum devices. However, with the combination of quantum-classical neural networks (NN), complex and high-dimensional features can be extracted by the classical NN to a reduced but more informative feature space to be processed by the existing quantum computers. In this study, we develop a hybrid quantum-classical NN to detect an amplitude shift cyber-attack on an in-vehicle control area network (CAN) dataset. We show that using the hybrid quantum classical NN, it is possible to achieve an attack detection accuracy of 94%, which is higher than a Long short-term memory (LSTM) NN (87%) or quantum NN alone (62%)
Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles
Khan, Sakib Mahmud, Comert, Gurcan, Chowdhury, Mashrur
Connected vehicles (CVs), because of the external connectivity with other CVs and connected infrastructure, are vulnerable to cyberattacks that can instantly compromise the safety of the vehicle itself and other connected vehicles and roadway infrastructure. One such cyberattack is the false information attack, where an external attacker injects inaccurate information into the connected vehicles and eventually can cause catastrophic consequences by compromising safety-critical applications like the forward collision warning. The occurrence and target of such attack events can be very dynamic, making real-time and near-real-time detection challenging. Change point models, can be used for real-time anomaly detection caused by the false information attack. In this paper, we have evaluated three change point-based statistical models; Expectation Maximization, Cumulative Summation, and Bayesian Online Change Point Algorithms for cyberattack detection in the CV data. Also, data-driven artificial intelligence (AI) models, which can be used to detect known and unknown underlying patterns in the dataset, have the potential of detecting a real-time anomaly in the CV data. We have used six AI models to detect false information attacks and compared the performance for detecting the attacks with our developed change point models. Our study shows that change points models performed better in real-time false information attack detection compared to the performance of the AI models. Change point models having the advantage of no training requirements can be a feasible and computationally efficient alternative to AI models for false information attack detection in connected vehicles.
Assessment of System-Level Cyber Attack Vulnerability for Connected and Autonomous Vehicles Using Bayesian Networks
Comert, Gurcan, Chowdhury, Mashrur, Nicol, David M.
This study presents a methodology to quantify vulnerability of cyber attacks and their impacts based on probabilistic graphical models for intelligent transportation systems under connected and autonomous vehicles framework. Cyber attack vulnerabilities from various types and their impacts are calculated for intelligent signals and cooperative adaptive cruise control (CACC) applications based on the selected performance measures. Numerical examples are given that show impact of vulnerabilities in terms of average intersection queue lengths, number of stops, average speed, and delays. At a signalized network with and without redundant systems, vulnerability can increase average queues and delays by $3\%$ and $15\%$ and $4\%$ and $17\%$, respectively. For CACC application, impact levels reach to $50\%$ delay difference on average when low amount of speed information is perturbed. When significantly different speed characteristics are inserted by an attacker, delay difference increases beyond $100\%$ of normal traffic conditions.
Real-time Traffic Data Prediction with Basic Safety Messages using Kalman-Filter based Noise Reduction Model and Long Short-term Memory Neural Network
Rahman, Mizanur, Chowdhury, Mashrur, McClendon, Jerome
With the development of Connected Vehicle (CV) technology, temporal variation of roadway traffic can be captured by sharing Basic Safety Messages (BSMs) from each vehicle using the communication between vehicles as well as with transportation roadside infrastructures (e.g., traffic signal) and traffic management centers. However, the penetration of connected vehicles in the near future will be limited. BSMs from limited CVs could provide an inaccurate estimation of current speed or space headway. This inaccuracy in the estimated current average speed and average space headway data is termed as noise. This noise in the traffic data significantly reduces the prediction accuracy of a machine learning model, such as the accuracy of long short term memory (LSTM) model in predicting traffic condition. To improve the real time prediction accuracy with low penetration of CVs, we developed a traffic data prediction model that combines the LSTM with a noise reduction model (the standard Kalman filter or Kalman filter based Rauch Tung Striebel (RTS)). The average speed and space headway used in this study were generated from the Enhanced Next Generation Simulation (NGSIM) dataset, which contains vehicle trajectory data for every one tenth of a second. Compared to a baseline LSTM model without any noise reduction, for 5 percent penetration of CVs, the analyses revealed that combined LSTM\RTS model reduced the mean absolute percentage error (MAPE) from 19 percent to 5 percent for speed prediction and from 27 percent to 9 percent for space headway prediction. The overall reduction of MAPE value ranged from 1 percent to 14 percent for speed and 2 percent to 18 percent for space headway prediction compared to the baseline model.