Chouldechova, Alexandra
The effect of differential victim crime reporting on predictive policing systems
Akpinar, Nil-Jana, De-Arteaga, Maria, Chouldechova, Alexandra
Police departments around the world have been experimenting with forms of place-based data-driven proactive policing for over two decades. Modern incarnations of such systems are commonly known as hot spot predictive policing. These systems predict where future crime is likely to concentrate such that police can allocate patrols to these areas and deter crime before it occurs. Previous research on fairness in predictive policing has concentrated on the feedback loops which occur when models are trained on discovered crime data, but has limited implications for models trained on victim crime reporting data. We demonstrate how differential victim crime reporting rates across geographical areas can lead to outcome disparities in common crime hot spot prediction models. Our analysis is based on a simulation patterned after district-level victimization and crime reporting survey data for Bogot\'a, Colombia. Our results suggest that differential crime reporting rates can lead to a displacement of predicted hotspots from high crime but low reporting areas to high or medium crime and high reporting areas. This may lead to misallocations both in the form of over-policing and under-policing.
Characterizing Fairness Over the Set of Good Models Under Selective Labels
Coston, Amanda, Rambachan, Ashesh, Chouldechova, Alexandra
Algorithmic risk assessments are increasingly used to make and inform decisions in a wide variety of high-stakes settings. In practice, there is often a multitude of predictive models that deliver similar overall performance, an empirical phenomenon commonly known as the "Rashomon Effect." While many competing models may perform similarly overall, they may have different properties over various subgroups, and therefore have drastically different predictive fairness properties. In this paper, we develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance, or "the set of good models." We provide tractable algorithms to compute the range of attainable group-level predictive disparities and the disparity minimizing model over the set of good models. We extend our framework to address the empirically relevant challenge of selectively labelled data in the setting where the selection decision and outcome are unconfounded given the observed data features. We illustrate our methods in two empirical applications. In a real world credit-scoring task, we build a model with lower predictive disparities than the benchmark model, and demonstrate the benefits of properly accounting for the selective labels problem. In a recidivism risk prediction task, we audit an existing risk score, and find that it generates larger predictive disparities than any model in the set of good models.
Counterfactual Predictions under Runtime Confounding
Coston, Amanda, Kennedy, Edward H., Chouldechova, Alexandra
Algorithmic tools are increasingly prevalent in domains such as health care, education, lending, criminal justice, and child welfare [2, 7, 12, 15, 30]. In many cases, the tools are not intended to replace human decision-making, but rather to distill rich case information into a simpler form, such as a risk score, to inform human decision makers [1, 9]. The type of information that these tools need to convey is often counterfactual in nature. Decision-makers need to know what is likely to happen if they choose to take a particular action. For instance, an undergraduate program advisor determining which students to recommend for a personalized case management program might wish to know the likelihood that a given student will graduate if enrolled in the program. In criminal justice, a parole board determining whether to release an offender may wish to know the likelihood that the offender will succeed on parole under different possible levels of supervision intensity. A common challenge to developing valid counterfactual prediction models is that all the data available for training and evaluation is observational: the data reflects historical decisions and outcomes under those decisions rather than randomized trials intended to assess outcomes under different policies. If the data is confounded--that is, if there are factors not captured in the data that influenced both the outcome of interest and historical decisions--valid counterfactual prediction may not be possible.
Counterfactual Risk Assessments, Evaluation, and Fairness
Coston, Amanda, Chouldechova, Alexandra, Kennedy, Edward H.
Algorithmic risk assessments are increasingly used to help humans make decisions in high-stakes settings, such as medicine, criminal justice and education. In each of these cases, the purpose of the risk assessment tool is to inform actions, such as medical treatments or release conditions, often with the aim of reducing the likelihood of an adverse event such as hospital readmission or recidivism. Problematically, most tools are trained and evaluated on historical data in which the outcomes observed depend on the historical decision-making policy. These tools thus reflect risk under the historical policy, rather than under the different decision options that the tool is intended to inform. Even when tools are constructed to predict risk under a specific decision, they are often improperly evaluated as predictors of the target outcome. Focusing on the evaluation task, in this paper we define counterfactual analogues of common predictive performance and algorithmic fairness metrics that we argue are better suited for the decision-making context. We introduce a new method for estimating the proposed metrics using doubly robust estimation. We provide theoretical results that show that only under strong conditions can fairness according to the standard metric and the counterfactual metric simultaneously hold. Consequently, fairness-promoting methods that target parity in a standard fairness metric may --- and as we show empirically, do --- induce greater imbalance in the counterfactual analogue. We provide empirical comparisons on both synthetic data and a real world child welfare dataset to demonstrate how the proposed method improves upon standard practice.
What's in a Name? Reducing Bias in Bios without Access to Protected Attributes
Romanov, Alexey, De-Arteaga, Maria, Wallach, Hanna, Chayes, Jennifer, Borgs, Christian, Chouldechova, Alexandra, Geyik, Sahin, Kenthapadi, Krishnaram, Rumshisky, Anna, Kalai, Adam Tauman
There is a growing body of work that proposes methods for mitigating bias in machine learning systems. These methods typically rely on access to protected attributes such as race, gender, or age. However, this raises two significant challenges: (1) protected attributes may not be available or it may not be legal to use them, and (2) it is often desirable to simultaneously consider multiple protected attributes, as well as their intersections. In the context of mitigating bias in occupation classification, we propose a method for discouraging correlation between the predicted probability of an individual's true occupation and a word embedding of their name. This method leverages the societal biases that are encoded in word embeddings, eliminating the need for access to protected attributes. Crucially, it only requires access to individuals' names at training time and not at deployment time. We evaluate two variations of our proposed method using a large-scale dataset of online biographies. We find that both variations simultaneously reduce race and gender biases, with almost no reduction in the classifier's overall true positive rate.
Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting
De-Arteaga, Maria, Romanov, Alexey, Wallach, Hanna, Chayes, Jennifer, Borgs, Christian, Chouldechova, Alexandra, Geyik, Sahin, Kenthapadi, Krishnaram, Kalai, Adam Tauman
We present a large-scale study of gender bias in occupation classification, a task where the use of machine learning may lead to negative outcomes on peoples' lives. We analyze the potential allocation harms that can result from semantic representation bias. To do so, we study the impact on occupation classification of including explicit gender indicators---such as first names and pronouns---in different semantic representations of online biographies. Additionally, we quantify the bias that remains when these indicators are "scrubbed," and describe proxy behavior that occurs in the absence of explicit gender indicators. As we demonstrate, differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.
Does mitigating ML's impact disparity require treatment disparity?
Lipton, Zachary, McAuley, Julian, Chouldechova, Alexandra
Following precedent in employment discrimination law, two notions of disparity are widely-discussed in papers on fairness and ML. Algorithms exhibit treatment disparity if they formally treat members of protected subgroups differently; algorithms exhibit impact disparity when outcomes differ across subgroups (even unintentionally). Naturally, we can achieve impact parity through purposeful treatment disparity. One line of papers aims to reconcile the two parities proposing disparate learning processes (DLPs). Here, the sensitive feature is used during training but a group-blind classifier is produced. In this paper, we show that: (i) when sensitive and (nominally) nonsensitive features are correlated, DLPs will indirectly implement treatment disparity, undermining the policy desiderata they are designed to address; (ii) when group membership is partly revealed by other features, DLPs induce within-class discrimination; and (iii) in general, DLPs provide suboptimal trade-offs between accuracy and impact parity. Experimental results on several real-world datasets highlight the practical consequences of applying DLPs.
Does mitigating ML's impact disparity require treatment disparity?
Lipton, Zachary, McAuley, Julian, Chouldechova, Alexandra
Following precedent in employment discrimination law, two notions of disparity are widely-discussed in papers on fairness and ML. Algorithms exhibit treatment disparity if they formally treat members of protected subgroups differently; algorithms exhibit impact disparity when outcomes differ across subgroups (even unintentionally). Naturally, we can achieve impact parity through purposeful treatment disparity. One line of papers aims to reconcile the two parities proposing disparate learning processes (DLPs). Here, the sensitive feature is used during training but a group-blind classifier is produced. In this paper, we show that: (i) when sensitive and (nominally) nonsensitive features are correlated, DLPs will indirectly implement treatment disparity, undermining the policy desiderata they are designed to address; (ii) when group membership is partly revealed by other features, DLPs induce within-class discrimination; and (iii) in general, DLPs provide suboptimal trade-offs between accuracy and impact parity. Experimental results on several real-world datasets highlight the practical consequences of applying DLPs.
The Frontiers of Fairness in Machine Learning
Chouldechova, Alexandra, Roth, Aaron
The last decade has seen a vast increase both in the diversity of applications to which machine learning is applied, and to the import of those applications. Machine learning is no longer just the engine behind ad placements and spam filters: it is now used to filter loan applicants, deploy police officers, and inform bail and parole decisions, amongst other things. The result has been a major concern for the potential for data driven methods to introduce and perpetuate discriminatory practices, and to otherwise be unfair. And this concern has not been without reason: a steady stream of empirical findings has shown that data driven methods can unintentionally both encode existinghumanbiases andintroducenewones(see e.g.
Learning under selective labels in the presence of expert consistency
De-Arteaga, Maria, Dubrawski, Artur, Chouldechova, Alexandra
We explore the problem of learning under selective labels in the context of algorithm-assisted decision making. Selective labels is a pervasive selection bias problem that arises when historical decision making blinds us to the true outcome for certain instances. Examples of this are common in many applications, ranging from predicting recidivism using pre-trial release data to diagnosing patients. In this paper we discuss why selective labels often cannot be effectively tackled by standard methods for adjusting for sample selection bias, even if there are no unobservables. We propose a data augmentation approach that can be used to either leverage expert consistency to mitigate the partial blindness that results from selective labels, or to empirically validate whether learning under such framework may lead to unreliable models prone to systemic discrimination.