Choudhary, Priyankar
Leveraging Large Language Models for Explainable Activity Recognition in Smart Homes: A Critical Evaluation
Fiori, Michele, Civitarese, Gabriele, Choudhary, Priyankar, Bettini, Claudio
Explainable Artificial Intelligence (XAI) aims to uncover the inner reasoning of machine learning models. In IoT systems, XAI improves the transparency of models processing sensor data from multiple heterogeneous devices, ensuring end-users understand and trust their outputs. Among the many applications, XAI has also been applied to sensor-based Activities of Daily Living (ADLs) recognition in smart homes. Existing approaches highlight which sensor events are most important for each predicted activity, using simple rules to convert these events into natural language explanations for non-expert users. However, these methods produce rigid explanations lacking natural language flexibility and are not scalable. With the recent rise of Large Language Models (LLMs), it is worth exploring whether they can enhance explanation generation, considering their proven knowledge of human activities. This paper investigates potential approaches to combine XAI and LLMs for sensor-based ADL recognition. We evaluate if LLMs can be used: a) as explainable zero-shot ADL recognition models, avoiding costly labeled data collection, and b) to automate the generation of explanations for existing data-driven XAI approaches when training data is available and the goal is higher recognition rates. Our critical evaluation provides insights into the benefits and challenges of using LLMs for explainable ADL recognition.
Large Language Models are Zero-Shot Recognizers for Activities of Daily Living
Civitarese, Gabriele, Fiori, Michele, Choudhary, Priyankar, Bettini, Claudio
The sensor-based recognition of Activities of Daily Living (ADLs) in smart home environments enables several applications in the areas of energy management, safety, well-being, and healthcare. ADLs recognition is typically based on deep learning methods requiring large datasets to be trained. Recently, several studies proved that Large Language Models (LLMs) effectively capture common-sense knowledge about human activities. However, the effectiveness of LLMs for ADLs recognition in smart home environments still deserves to be investigated. In this work, we propose ADL-LLM, a novel LLM-based ADLs recognition system. ADLLLM transforms raw sensor data into textual representations, that are processed by an LLM to perform zero-shot ADLs recognition. Moreover, in the scenario where a small labeled dataset is available, ADL-LLM can also be empowered with few-shot prompting. We evaluated ADL-LLM on two public datasets, showing its effectiveness in this domain.