Goto

Collaborating Authors

 Chong, Adrian


Enhancing personalised thermal comfort models with Active Learning for improved HVAC controls

arXiv.org Artificial Intelligence

Developing personalised thermal comfort models to inform occupant-centric controls (OCC) in buildings requires collecting large amounts of real-time occupant preference data. This process can be highly intrusive and labour-intensive for large-scale implementations, limiting the practicality of real-world OCC implementations. To address this issue, this study proposes a thermal preference-based HVAC control framework enhanced with Active Learning (AL) to address the data challenges related to real-world implementations of such OCC systems. The proposed AL approach proactively identifies the most informative thermal conditions for human annotation and iteratively updates a supervised thermal comfort model. The resulting model is subsequently used to predict the occupants' thermal preferences under different thermal conditions, which are integrated into the building's HVAC controls. The feasibility of our proposed AL-enabled OCC was demonstrated in an EnergyPlus simulation of a real-world testbed supplemented with the thermal preference data of 58 study occupants. The preliminary results indicated a significant reduction in overall labelling effort (i.e., 31.0%) between our AL-enabled OCC and conventional OCC while still achieving a slight increase in energy savings (i.e., 1.3%) and thermal satisfaction levels above 98%. This result demonstrates the potential for deploying such systems in future real-world implementations, enabling personalised comfort and energy-efficient building operations.


Elastic buildings: Calibrated district-scale simulation of occupant-flexible campus operation for hybrid work optimization

arXiv.org Artificial Intelligence

Before 2020, the way occupants utilized the built environment had been changing slowly towards scenarios in which occupants have more choice and flexibility in where and how they work. The global COVID-19 pandemic accelerated this phenomenon rapidly through lockdowns and hybrid work arrangements. Many occupants and employers are considering keeping some of these flexibility-based strategies due to their benefits and cost impacts. This paper simulates various scenarios related to the operational technologies and policies of a real-world campus using a district-scale City Energy Analyst (CEA) model that is calibrated with measured energy and occupancy profiles extracted from WiFi data. These scenarios demonstrate the energy impact of ramping building operations up and down more rapidly and effectively to the flex-based work strategies that may solidify. The scenarios show a 4-12% decrease in space cooling demand due to occupant absenteeism if centralized building system operation is in place, but as high as 21-68% if occupancy-driven building controls are implemented. The paper discusses technologies and strategies that are important in this paradigm shift of operations.


Machine Learning for Smart and Energy-Efficient Buildings

arXiv.org Artificial Intelligence

Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.