Choi, Minseok
Breaking Chains: Unraveling the Links in Multi-Hop Knowledge Unlearning
Choi, Minseok, Park, ChaeHun, Lee, Dohyun, Choo, Jaegul
Large language models (LLMs) serve as giant information stores, often including personal or copyrighted data, and retraining them from scratch is not a viable option. This has led to the development of various fast, approximate unlearning techniques to selectively remove knowledge from LLMs. Prior research has largely focused on minimizing the probabilities of specific token sequences by reversing the language modeling objective. However, these methods still leave LLMs vulnerable to adversarial attacks that exploit indirect references. In this work, we examine the limitations of current unlearning techniques in effectively erasing a particular type of indirect prompt: multi-hop queries. Our findings reveal that existing methods fail to completely remove multi-hop knowledge when one of the intermediate hops is unlearned. To address this issue, we propose MUNCH, a simple uncertainty-based approach that breaks down multi-hop queries into subquestions and leverages the uncertainty of the unlearned model in final decision-making. Empirical results demonstrate the effectiveness of our framework, and MUNCH can be easily integrated with existing unlearning techniques, making it a flexible and useful solution for enhancing unlearning processes.
SNAP: Unlearning Selective Knowledge in Large Language Models with Negative Instructions
Choi, Minseok, Rim, Daniel, Lee, Dohyun, Choo, Jaegul
Instruction-following large language models (LLMs), such as ChatGPT, have become increasingly popular with the general audience, many of whom are incorporating them into their daily routines. However, these LLMs inadvertently disclose personal or copyrighted information, which calls for a machine unlearning method to remove selective knowledge. Previous attempts sought to forget the link between the target information and its associated entities, but it rather led to generating undesirable responses about the target, compromising the end-user experience. In this work, we propose SNAP, an innovative framework designed to selectively unlearn information by 1) training an LLM with negative instructions to generate obliterated responses, 2) augmenting hard positives to retain the original LLM performance, and 3) applying the novel Wasserstein regularization to ensure adequate deviation from the initial weights of the LLM. We evaluate our framework on various NLP benchmarks and demonstrate that our approach retains the original LLM capabilities, while successfully unlearning the specified information.
PairEval: Open-domain Dialogue Evaluation with Pairwise Comparison
Park, ChaeHun, Choi, Minseok, Lee, Dohyun, Choo, Jaegul
Building a reliable and automated evaluation metric is a necessary but challenging problem for open-domain dialogue systems. Recent studies proposed evaluation metrics that assess generated responses by considering their relevance to previous dialogue histories. Although effective, these metrics evaluate individual responses directly rather than considering their relative quality compared to other responses. To handle this, we propose PairEval, a novel dialogue evaluation metric for assessing responses by comparing their quality against responses in different conversations. PairEval is built on top of open-sourced and moderate-size language models, and we make them specialized in pairwise comparison between dialogue responses. Extensive experiments on multiple benchmarks demonstrate that our metric exhibits a higher correlation with human judgments than baseline metrics. We also find that the proposed comparative metric is more robust in detecting common failures from open-domain dialogue systems, including repetition and speaker insensitivity.
SimCKP: Simple Contrastive Learning of Keyphrase Representations
Choi, Minseok, Gwak, Chaeheon, Kim, Seho, Kim, Si Hyeong, Choo, Jaegul
Keyphrase generation (KG) aims to generate a set of summarizing words or phrases given a source document, while keyphrase extraction (KE) aims to identify them from the text. Because the search space is much smaller in KE, it is often combined with KG to predict keyphrases that may or may not exist in the corresponding document. However, current unified approaches adopt sequence labeling and maximization-based generation that primarily operate at a token level, falling short in observing and scoring keyphrases as a whole. In this work, we propose SimCKP, a simple contrastive learning framework that consists of two stages: 1) An extractor-generator that extracts keyphrases by learning context-aware phrase-level representations in a contrastive manner while also generating keyphrases that do not appear in the document; 2) A reranker that adapts scores for each generated phrase by likewise aligning their representations with the corresponding document. Experimental results on multiple benchmark datasets demonstrate the effectiveness of our proposed approach, which outperforms the state-of-the-art models by a significant margin.
PRiSM: Enhancing Low-Resource Document-Level Relation Extraction with Relation-Aware Score Calibration
Choi, Minseok, Lim, Hyesu, Choo, Jaegul
Document-level relation extraction (DocRE) aims to extract relations of all entity pairs in a document. A key challenge in DocRE is the cost of annotating such data which requires intensive human effort. Thus, we investigate the case of DocRE in a low-resource setting, and we find that existing models trained on low data overestimate the NA ("no relation") label, causing limited performance. In this work, we approach the problem from a calibration perspective and propose PRiSM, which learns to adapt logits based on relation semantic information. We evaluate our method on three DocRE datasets and demonstrate that integrating existing models with PRiSM improves performance by as much as 26.38 F1 score, while the calibration error drops as much as 36 times when trained with about 3% of data. The code is publicly available at https://github.com/brightjade/PRiSM.
Two Tales of Platoon Intelligence for Autonomous Mobility Control: Enabling Deep Learning Recipes
Park, Soohyun, Lee, Haemin, Park, Chanyoung, Jung, Soyi, Choi, Minseok, Kim, Joongheon
When applied to autonomous mobility applications, RL can be used to derive optimal control In the fast-paced world of technological advancements, strategies for maintaining safety, efficiency, and robustness in autonomous mobility has emerged as a transformative innovation, various traffic situations. Furthermore, in order to control the dramatically reshaping numerous aspects of human life, platoon, the use of single-agent RL is not suitable because such as transportation, logistics, and surveillance [1]. These all agents will identically operate when they are located in a complex systems depend on advanced algorithms, sensors, and same space and time with same action-reward settings. Therefore, communication networks to carry out their tasks smoothly for realizing the cooperation and coordination among and proficiently with their own objectives [2]. One crucial multiple agents, multi-agent RL (MARL) algorithms should element that supports the successful functioning of these be utilized [4]-[6]. Among various MARL algorithms, this systems, particularly when operating as a coordinated group, paper considers communication network (CommNet) which is the efficient sharing of information among multiple mobility is widely and actively used in modern distributed computing platforms.
HistRED: A Historical Document-Level Relation Extraction Dataset
Yang, Soyoung, Choi, Minseok, Cho, Youngwoo, Choo, Jaegul
Despite the extensive applications of relation extraction (RE) tasks in various domains, little has been explored in the historical context, which contains promising data across hundreds and thousands of years. To promote the historical RE research, we present HistRED constructed from Yeonhaengnok. Yeonhaengnok is a collection of records originally written in Hanja, the classical Chinese writing, which has later been translated into Korean. HistRED provides bilingual annotations such that RE can be performed on Korean and Hanja texts. In addition, HistRED supports various self-contained subtexts with different lengths, from a sentence level to a document level, supporting diverse context settings for researchers to evaluate the robustness of their RE models. To demonstrate the usefulness of our dataset, we propose a bilingual RE model that leverages both Korean and Hanja contexts to predict relations between entities. Our model outperforms monolingual baselines on HistRED, showing that employing multiple language contexts supplements the RE predictions. The dataset is publicly available at: https://huggingface.co/datasets/Soyoung/HistRED under CC BY-NC-ND 4.0 license.
SplitGP: Achieving Both Generalization and Personalization in Federated Learning
Han, Dong-Jun, Kim, Do-Yeon, Choi, Minseok, Brinton, Christopher G., Moon, Jaekyun
A fundamental challenge to providing edge-AI services is the need for a machine learning (ML) model that achieves personalization (i.e., to individual clients) and generalization (i.e., to unseen data) properties concurrently. Existing techniques in federated learning (FL) have encountered a steep tradeoff between these objectives and impose large computational requirements on edge devices during training and inference. In this paper, we propose SplitGP, a new split learning solution that can simultaneously capture generalization and personalization capabilities for efficient inference across resource-constrained clients (e.g., mobile/IoT devices). Our key idea is to split the full ML model into client-side and server-side components, and impose different roles to them: the client-side model is trained to have strong personalization capability optimized to each client's main task, while the server-side model is trained to have strong generalization capability for handling all clients' out-of-distribution tasks. We analytically characterize the convergence behavior of SplitGP, revealing that all client models approach stationary points asymptotically. Further, we analyze the inference time in SplitGP and provide bounds for determining model split ratios. Experimental results show that SplitGP outperforms existing baselines by wide margins in inference time and test accuracy for varying amounts of out-of-distribution samples.