Choi, Byron
VSFormer: Value and Shape-Aware Transformer with Prior-Enhanced Self-Attention for Multivariate Time Series Classification
Xi, Wenjie, Zuo, Rundong, Alvarez, Alejandro, Zhang, Jie, Choi, Byron, Lin, Jessica
Multivariate time series classification is a crucial task in data mining, attracting growing research interest due to its broad applications. While many existing methods focus on discovering discriminative patterns in time series, real-world data does not always present such patterns, and sometimes raw numerical values can also serve as discriminative features. Additionally, the recent success of Transformer models has inspired many studies. However, when applying to time series classification, the self-attention mechanisms in Transformer models could introduce classification-irrelevant features, thereby compromising accuracy. To address these challenges, we propose a novel method, VSFormer, that incorporates both discriminative patterns (shape) and numerical information (value). In addition, we extract class-specific prior information derived from supervised information to enrich the positional encoding and provide classification-oriented self-attention learning, thereby enhancing its effectiveness. Extensive experiments on all 30 UEA archived datasets demonstrate the superior performance of our method compared to SOTA models. Through ablation studies, we demonstrate the effectiveness of the improved encoding layer and the proposed self-attention mechanism. Finally, We provide a case study on a real-world time series dataset without discriminative patterns to interpret our model.
Graph Embedding for Combinatorial Optimization: A Survey
Peng, Yun, Choi, Byron, Xu, Jianliang
Graphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Using ML- based CO methods, a graph has to be represented in numerical vectors, which is known as graph embedding. In this survey, we provide a thorough overview of recent graph embedding methods that have been used to solve CO problems. Most graph embedding methods have two stages: graph preprocessing and ML model learning. This survey classifies graph embedding works from the perspective of graph preprocessing tasks and ML models. Furthermore, this survey summarizes recent graph-based CO methods that exploit graph embedding. In particular, graph embedding can be employed as part of classification techniques or can be combined with search methods to find solutions to CO problems. The survey ends with several remarks on future research directions.