Cho, Yae Jee
Heterogeneous Low-Rank Approximation for Federated Fine-tuning of On-Device Foundation Models
Cho, Yae Jee, Liu, Luyang, Xu, Zheng, Fahrezi, Aldi, Joshi, Gauri
Large foundation models (FMs) adapt surprisingly well to specific domains or tasks with fine-tuning. Federated learning (FL) further enables private FM fine-tuning using the local data on devices. However, the standard FMs' large size poses challenges for resource-constrained and heterogeneous devices. To address this, we consider FMs with reduced parameter sizes, referred to as on-device FMs (ODFMs). While ODFMs allow on-device inference, computational constraints still hinder efficient federated fine-tuning. We propose a parameter-efficient federated fine-tuning method for ODFMs using heterogeneous low-rank approximations (LoRAs) that addresses system and data heterogeneity. We show that homogeneous LoRA ranks face a trade-off between overfitting and slow convergence, and propose HetLoRA, which employs heterogeneous ranks across clients and eliminates the shortcomings of homogeneous HetLoRA. By applying rank self-pruning locally and sparsity-weighted aggregation at the server, we combine the advantages of high and low-rank LoRAs, which achieves improved convergence speed and final performance compared to homogeneous LoRA. Furthermore, it offers enhanced computation efficiency compared to full fine-tuning, making it suitable for heterogeneous devices while preserving data privacy.
Local or Global: Selective Knowledge Assimilation for Federated Learning with Limited Labels
Cho, Yae Jee, Joshi, Gauri, Dimitriadis, Dimitrios
Many existing FL methods assume clients with fully-labeled data, while in realistic settings, clients have limited labels due to the expensive and laborious process of labeling. Limited labeled local data of the clients often leads to their local model having poor generalization abilities to their larger unlabeled local data, such as having class-distribution mismatch with the unlabeled data. As a result, clients may instead look to benefit from the global model trained across clients to leverage their unlabeled data, but this also becomes difficult due to data heterogeneity across clients. In our work, we propose FedLabel where clients selectively choose the local or global model to pseudo-label their unlabeled data depending on which is more of an expert of the data. We further utilize both the local and global models' knowledge via global-local consistency regularization which minimizes the divergence between the two models' outputs when they have identical pseudo-labels for the unlabeled data. Unlike other semi-supervised FL baselines, our method does not require additional experts other than the local or global model, nor require additional parameters to be communicated. We also do not assume any server-labeled data or fully labeled clients. For both cross-device and cross-silo settings, we show that FedLabel outperforms other semi-supervised FL baselines by $8$-$24\%$, and even outperforms standard fully supervised FL baselines ($100\%$ labeled data) with only $5$-$20\%$ of labeled data.
On the Convergence of Federated Averaging with Cyclic Client Participation
Cho, Yae Jee, Sharma, Pranay, Joshi, Gauri, Xu, Zheng, Kale, Satyen, Zhang, Tong
Federated Averaging (FedAvg) and its variants are the most popular optimization algorithms in federated learning (FL). Previous convergence analyses of FedAvg either assume full client participation or partial client participation where the clients can be uniformly sampled. However, in practical cross-device FL systems, only a subset of clients that satisfy local criteria such as battery status, network connectivity, and maximum participation frequency requirements (to ensure privacy) are available for training at a given time. As a result, client availability follows a natural cyclic pattern. We provide (to our knowledge) the first theoretical framework to analyze the convergence of FedAvg with cyclic client participation with several different client optimizers such as GD, SGD, and shuffled SGD. Our analysis discovers that cyclic client participation can achieve a faster asymptotic convergence rate than vanilla FedAvg with uniform client participation under suitable conditions, providing valuable insights into the design of client sampling protocols.
Maximizing Global Model Appeal in Federated Learning
Cho, Yae Jee, Jhunjhunwala, Divyansh, Li, Tian, Smith, Virginia, Joshi, Gauri
Federated learning typically considers collaboratively training a global model using local data at edge clients. Clients may have their own individual requirements, such as having a minimal training loss threshold, which they expect to be met by the global model. However, due to client heterogeneity, the global model may not meet each client's requirements, and only a small subset may find the global model appealing. In this work, we explore the problem of the global model lacking appeal to the clients due to not being able to satisfy local requirements. We propose MaxFL, which aims to maximize the number of clients that find the global model appealing. We show that having a high global model appeal is important to maintain an adequate pool of clients for training, and can directly improve the test accuracy on both seen and unseen clients. We provide convergence guarantees for MaxFL and show that MaxFL achieves a $22$-$40\%$ and $18$-$50\%$ test accuracy improvement for the training clients and unseen clients respectively, compared to a wide range of FL modeling approaches, including those that tackle data heterogeneity, aim to incentivize clients, and learn personalized or fair models.
Bandit-based Communication-Efficient Client Selection Strategies for Federated Learning
Cho, Yae Jee, Gupta, Samarth, Joshi, Gauri, Yaฤan, Osman
Due to communication constraints and intermittent client availability in federated learning, only a subset of clients can participate in each training round. While most prior works assume uniform and unbiased client selection, recent work on biased client selection has shown that selecting clients with higher local losses can improve error convergence speed. However, previously proposed biased selection strategies either require additional communication cost for evaluating the exact local loss or utilize stale local loss, which can even make the model diverge. In this paper, we present a bandit-based communication-efficient client selection strategy UCB-CS that achieves faster convergence with lower communication overhead. We also demonstrate how client selection can be used to improve fairness.
Client Selection in Federated Learning: Convergence Analysis and Power-of-Choice Selection Strategies
Cho, Yae Jee, Wang, Jianyu, Joshi, Gauri
Federated learning is a distributed optimization paradigm that enables a large number of resource-limited client nodes to cooperatively train a model without data sharing. Several works have analyzed the convergence of federated learning by accounting of data heterogeneity, communication and computation limitations, and partial client participation. However, they assume unbiased client participation, where clients are selected at random or in proportion of their data sizes. In this paper, we present the first convergence analysis of federated optimization for biased client selection strategies, and quantify how the selection bias affects convergence speed. We reveal that biasing client selection towards clients with higher local loss achieves faster error convergence. Using this insight, we propose Power-of-Choice, a communication- and computation-efficient client selection framework that can flexibly span the trade-off between convergence speed and solution bias. Our experiments demonstrate that Power-of-Choice strategies converge up to 3 $\times$ faster and give $10$% higher test accuracy than the baseline random selection.