Goto

Collaborating Authors

 Cho, Seonhee


Utility of Multimodal Large Language Models in Analyzing Chest X-ray with Incomplete Contextual Information

arXiv.org Artificial Intelligence

Background: Large language models (LLMs) are gaining use in clinical settings, but their performance can suffer with incomplete radiology reports. We tested whether multimodal LLMs (using text and images) could improve accuracy and understanding in chest radiography reports, making them more effective for clinical decision support. Purpose: To assess the robustness of LLMs in generating accurate impressions from chest radiography reports using both incomplete data and multimodal data. Material and Methods: We used 300 radiology image-report pairs from the MIMIC-CXR database. Three LLMs (OpenFlamingo, MedFlamingo, IDEFICS) were tested in both text-only and multimodal formats. Impressions were first generated from the full text, then tested by removing 20%, 50%, and 80% of the text. The impact of adding images was evaluated using chest x-rays, and model performance was compared using three metrics with statistical analysis. Results: The text-only models (OpenFlamingo, MedFlamingo, IDEFICS) had similar performance (ROUGE-L: 0.39 vs. 0.21 vs. 0.21; F1RadGraph: 0.34 vs. 0.17 vs. 0.17; F1CheXbert: 0.53 vs. 0.40 vs. 0.40), with OpenFlamingo performing best on complete text (p<0.001). Performance declined with incomplete data across all models. However, adding images significantly boosted the performance of MedFlamingo and IDEFICS (p<0.001), equaling or surpassing OpenFlamingo, even with incomplete text. Conclusion: LLMs may produce low-quality outputs with incomplete radiology data, but multimodal LLMs can improve reliability and support clinical decision-making. Keywords: Large language model; multimodal; semantic analysis; Chest Radiography; Clinical Decision Support;


TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring

arXiv.org Artificial Intelligence

Text-to-SQL enables users to interact with databases using natural language, simplifying the retrieval and synthesis of information. Despite the remarkable success of large language models (LLMs) in translating natural language questions into SQL queries, widespread deployment remains limited due to two primary challenges. First, the effective use of text-to-SQL models depends on users' understanding of the model's capabilities-the scope of questions the model can correctly answer. Second, the absence of abstention mechanisms can lead to incorrect SQL generation going unnoticed, thereby undermining trust in the model's output. To enable wider deployment, it is crucial to address these challenges in model design and enhance model evaluation to build trust in the model's output. To this end, we introduce TrustSQL, a novel comprehensive benchmark designed to evaluate text-to-SQL reliability-defined as a model's ability to correctly handle any type of input question by generating correct SQL queries for feasible questions and abstaining from generating infeasible ones (e.g., due to schema incompatibility or functionalities beyond SQL). We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches: (1) pipeline-based methods combining SQL generators with infeasible question detectors and SQL error detectors for abstention; and (2) unified methods using a single model for the entire task. Our experimental results reveal that achieving high scores under severe penalties requires significant effort and provide a new perspective on developing text-to-SQL models for safer deployment. TrustSQL is available at https://github.com/glee4810/TrustSQL.


EHR-SeqSQL : A Sequential Text-to-SQL Dataset For Interactively Exploring Electronic Health Records

arXiv.org Artificial Intelligence

In this paper, we introduce EHR-SeqSQL, a novel sequential text-to-SQL dataset for Electronic Health Record (EHR) databases. EHR-SeqSQL is designed to address critical yet underexplored aspects in text-to-SQL parsing: interactivity, compositionality, and efficiency. To the best of our knowledge, EHR-SeqSQL is not only the largest but also the first medical text-to-SQL dataset benchmark to include sequential and contextual questions. We provide a data split and the new test set designed to assess compositional generalization ability. Our experiments demonstrate the superiority of a multi-turn approach over a single-turn approach in learning compositionality. Additionally, our dataset integrates specially crafted tokens into SQL queries to improve execution efficiency. With EHR-SeqSQL, we aim to bridge the gap between practical needs and academic research in the text-to-SQL domain.


Simplifying Multimodality: Unimodal Approach to Multimodal Challenges in Radiology with General-Domain Large Language Model

arXiv.org Artificial Intelligence

Recent advancements in Large Multimodal Models (LMMs) have attracted interest in their generalization capability with only a few samples in the prompt. This progress is particularly relevant to the medical domain, where the quality and sensitivity of data pose unique challenges for model training and application. However, the dependency on high-quality data for effective in-context learning raises questions about the feasibility of these models when encountering with the inevitable variations and errors inherent in real-world medical data. In this paper, we introduce MID-M, a novel framework that leverages the in-context learning capabilities of a general-domain Large Language Model (LLM) to process multimodal data via image descriptions. MID-M achieves a comparable or superior performance to task-specific fine-tuned LMMs and other general-domain ones, without the extensive domain-specific training or pre-training on multimodal data, with significantly fewer parameters. This highlights the potential of leveraging general-domain LLMs for domain-specific tasks and offers a sustainable and cost-effective alternative to traditional LMM developments. Moreover, the robustness of MID-M against data quality issues demonstrates its practical utility in real-world medical domain applications.


Open-WikiTable: Dataset for Open Domain Question Answering with Complex Reasoning over Table

arXiv.org Artificial Intelligence

Despite recent interest in open domain question answering (ODQA) over tables, many studies still rely on datasets that are not truly optimal for the task with respect to utilizing structural nature of table. These datasets assume answers reside as a single cell value and do not necessitate exploring over multiple cells such as aggregation, comparison, and sorting. Thus, we release Open-WikiTable, the first ODQA dataset that requires complex reasoning over tables. Open-WikiTable is built upon WikiSQL and WikiTableQuestions to be applicable in the open-domain setting. As each question is coupled with both textual answers and SQL queries, Open-WikiTable opens up a wide range of possibilities for future research, as both reader and parser methods can be applied. The dataset and code are publicly available.