Plotting

 Cho, Jung-Hoon


Cooperative Advisory Residual Policies for Congestion Mitigation

arXiv.org Artificial Intelligence

Fleets of autonomous vehicles can mitigate traffic congestion through simple actions, thus improving many socioeconomic factors such as commute time and gas costs. However, these approaches are limited in practice as they assume precise control over autonomous vehicle fleets, incur extensive installation costs for a centralized sensor ecosystem, and also fail to account for uncertainty in driver behavior. To this end, we develop a class of learned residual policies that can be used in cooperative advisory systems and only require the use of a single vehicle with a human driver. Our policies advise drivers to behave in ways that mitigate traffic congestion while accounting for diverse driver behaviors, particularly drivers' reactions to instructions, to provide an improved user experience. To realize such policies, we introduce an improved reward function that explicitly addresses congestion mitigation and driver attitudes to advice. We show that our residual policies can be personalized by conditioning them on an inferred driver trait that is learned in an unsupervised manner with a variational autoencoder. Our policies are trained in simulation with our novel instruction adherence driver model, and evaluated in simulation and through a user study (N=16) to capture the sentiments of human drivers. Our results show that our approaches successfully mitigate congestion while adapting to different driver behaviors, with up to 20% and 40% improvement as measured by a combination metric of speed and deviations in speed across time over baselines in our simulation tests and user study, respectively. Our user study further shows that our policies are human-compatible and personalize to drivers.


Expert with Clustering: Hierarchical Online Preference Learning Framework

arXiv.org Artificial Intelligence

Emerging mobility systems are increasingly capable of recommending options to mobility users, to guide them towards personalized yet sustainable system outcomes. Even more so than the typical recommendation system, it is crucial to minimize regret, because 1) the mobility options directly affect the lives of the users, and 2) the system sustainability relies on sufficient user participation. In this study, we consider accelerating user preference learning by exploiting a low-dimensional latent space that captures the mobility preferences of users. We introduce a hierarchical contextual bandit framework named Expert with Clustering (EWC), which integrates clustering techniques and prediction with expert advice. EWC efficiently utilizes hierarchical user information and incorporates a novel Loss-guided Distance metric. This metric is instrumental in generating more representative cluster centroids. In a recommendation scenario with $N$ users, $T$ rounds per user, and $K$ options, our algorithm achieves a regret bound of $O(N\sqrt{T\log K} + NT)$. This bound consists of two parts: the first term is the regret from the Hedge algorithm, and the second term depends on the average loss from clustering. The algorithm performs with low regret, especially when a latent hierarchical structure exists among users. This regret bound underscores the theoretical and experimental efficacy of EWC, particularly in scenarios that demand rapid learning and adaptation. Experimental results highlight that EWC can substantially reduce regret by 27.57% compared to the LinUCB baseline. Our work offers a data-efficient approach to capturing both individual and collective behaviors, making it highly applicable to contexts with hierarchical structures. We expect the algorithm to be applicable to other settings with layered nuances of user preferences and information.


Temporal Transfer Learning for Traffic Optimization with Coarse-grained Advisory Autonomy

arXiv.org Artificial Intelligence

The recent development of connected and automated vehicle (CAV) technologies has spurred investigations to optimize dense urban traffic. This paper considers advisory autonomy, in which real-time driving advisories are issued to drivers, thus blending the CAV and the human driver. Due to the complexity of traffic systems, recent studies of coordinating CAVs have resorted to leveraging deep reinforcement learning (RL). Advisory autonomy is formalized as zero-order holds, and we consider a range of hold duration from 0.1 to 40 seconds. However, despite the similarity of the higher frequency tasks on CAVs, a direct application of deep RL fails to be generalized to advisory autonomy tasks. We introduce Temporal Transfer Learning (TTL) algorithms to select source tasks, systematically leveraging the temporal structure to solve the full range of tasks. TTL selects the most suitable source tasks to maximize the performance of the range of tasks. We validate our algorithms on diverse mixed-traffic scenarios, demonstrating that TTL more reliably solves the tasks than baselines. This paper underscores the potential of coarse-grained advisory autonomy with TTL in traffic flow optimization.


PeRP: Personalized Residual Policies For Congestion Mitigation Through Co-operative Advisory Systems

arXiv.org Artificial Intelligence

Intelligent driving systems can be used to mitigate congestion through simple actions, thus improving many socioeconomic factors such as commute time and gas costs. However, these systems assume precise control over autonomous vehicle fleets, and are hence limited in practice as they fail to account for uncertainty in human behavior. Piecewise Constant (PC) Policies address these issues by structurally modeling the likeness of human driving to reduce traffic congestion in dense scenarios to provide action advice to be followed by human drivers. However, PC policies assume that all drivers behave similarly. To this end, we develop a co-operative advisory system based on PC policies with a novel driver trait conditioned Personalized Residual Policy, PeRP. PeRP advises drivers to behave in ways that mitigate traffic congestion. We first infer the driver's intrinsic traits on how they follow instructions in an unsupervised manner with a variational autoencoder. Then, a policy conditioned on the inferred trait adapts the action of the PC policy to provide the driver with a personalized recommendation. Our system is trained in simulation with novel driver modeling of instruction adherence. We show that our approach successfully mitigates congestion while adapting to different driver behaviors, with 4 to 22% improvement in average speed over baselines.