Goto

Collaborating Authors

 Cho, Hyunghoon


Generating Synthetic Electronic Health Record (EHR) Data: A Review with Benchmarking

arXiv.org Machine Learning

We conduct a scoping review of existing approaches for synthetic EHR data generation, and benchmark major methods with proposed open-source software to offer recommendations for practitioners. We search three academic databases for our scoping review. Methods are benchmarked on open-source EHR datasets, MIMIC-III/IV. Seven existing methods covering major categories and two baseline methods are implemented and compared. Evaluation metrics concern data fidelity, downstream utility, privacy protection, and computational cost. 42 studies are identified and classified into five categories. Seven open-source methods covering all categories are selected, trained on MIMIC-III, and evaluated on MIMIC-III or MIMIC-IV for transportability considerations. Among them, GAN-based methods demonstrate competitive performance in fidelity and utility on MIMIC-III; rule-based methods excel in privacy protection. Similar findings are observed on MIMIC-IV, except that GAN-based methods further outperform the baseline methods in preserving fidelity. A Python package, ``SynthEHRella'', is provided to integrate various choices of approaches and evaluation metrics, enabling more streamlined exploration and evaluation of multiple methods. We found that method choice is governed by the relative importance of the evaluation metrics in downstream use cases. We provide a decision tree to guide the choice among the benchmarked methods. Based on the decision tree, GAN-based methods excel when distributional shifts exist between the training and testing populations. Otherwise, CorGAN and MedGAN are most suitable for association modeling and predictive modeling, respectively. Future research should prioritize enhancing fidelity of the synthetic data while controlling privacy exposure, and comprehensive benchmarking of longitudinal or conditional generation methods.


Large-Margin Classification in Hyperbolic Space

arXiv.org Machine Learning

Representing data in hyperbolic space can effectively capture latent hierarchical relationships. With the goal of enabling accurate classification of points in hyperbolic space while respecting their hyperbolic geometry, we introduce hyperbolic SVM, a hyperbolic formulation of support vector machine classifiers, and elucidate through new theoretical work its connection to the Euclidean counterpart. We demonstrate the performance improvement of hyperbolic SVM for multi-class prediction tasks on real-world complex networks as well as simulated datasets. Our work allows analytic pipelines that take the inherent hyperbolic geometry of the data into account in an end-to-end fashion without resorting to ill-fitting tools developed for Euclidean space.


Diffusion Component Analysis: Unraveling Functional Topology in Biological Networks

arXiv.org Machine Learning

Complex biological systems have been successfully modeled by biochemical and genetic interaction networks, typically gathered from high-throughput (HTP) data. These networks can be used to infer functional relationships between genes or proteins. Using the intuition that the topological role of a gene in a network relates to its biological function, local or diffusion based "guilt-by-association" and graph-theoretic methods have had success in inferring gene functions. Here we seek to improve function prediction by integrating diffusion-based methods with a novel dimensionality reduction technique to overcome the incomplete and noisy nature of network data. In this paper, we introduce diffusion component analysis (DCA), a framework that plugs in a diffusion model and learns a low-dimensional vector representation of each node to encode the topological properties of a network. As a proof of concept, we demonstrate DCA's substantial improvement over state-of-the-art diffusion-based approaches in predicting protein function from molecular interaction networks. Moreover, our DCA framework can integrate multiple networks from heterogeneous sources, consisting of genomic information, biochemical experiments and other resources, to even further improve function prediction. Yet another layer of performance gain is achieved by integrating the DCA framework with support vector machines that take our node vector representations as features. Overall, our DCA framework provides a novel representation of nodes in a network that can be used as a plug-in architecture to other machine learning algorithms to decipher topological properties of and obtain novel insights into interactomes.