Plotting

 Chiu, Ming-Chang


AIDE: Agentically Improve Visual Language Model with Domain Experts

arXiv.org Artificial Intelligence

The enhancement of Visual Language Models (VLMs) has traditionally relied on knowledge distillation from larger, more capable models. This dependence creates a fundamental bottleneck for improving state-of-the-art systems, particularly when no superior models exist. We introduce AIDE (Agentic Improvement through Domain Experts), a novel framework that enables VLMs to autonomously enhance their capabilities by leveraging specialized domain expert models. AIDE operates through a four-stage process: (1) identifying instances for refinement, (2) engaging domain experts for targeted analysis, (3) synthesizing expert outputs with existing data, and (4) integrating enhanced instances into the training pipeline. Experiments on multiple benchmarks, including MMMU, MME, MMBench, etc., demonstrate AIDE's ability to achieve notable performance gains without relying on larger VLMs nor human supervision. Our framework provides a scalable, resource-efficient approach to continuous VLM improvement, addressing critical limitations in current methodologies, particularly valuable when larger models are unavailable to access.


MegaCOIN: Enhancing Medium-Grained Color Perception for Vision-Language Models

arXiv.org Artificial Intelligence

In vision-language models (VLMs), the ability to perceive and interpret color and physical environment is crucial for achieving contextually accurate understanding and interaction. However, despite advances in multimodal modeling, there remains a significant lack of specialized datasets that rigorously evaluate a model's capacity to discern subtle color variations and spatial context -- critical elements for situational comprehension and reliable deployment across real-world applications. Toward that goal, we curate MegaCOIN, a high-quality, human-labeled dataset based on \emph{real} images with various contextual attributes. MegaCOIN consists of two parts: MegaCOIN-Instruct, which serves as a supervised fine-tuning (SFT) dataset for VLMs; and MegaCOIN-Bench, an annotated test set that can be used as a stand-alone QA dataset. MegaCOIN~provides three annotated features for 220,000 real images: foreground color, background color, and description of an object's physical environment, constituting 660k human annotations. In addition, MegaCOIN can be applied to benchmark domain generalization (DG) algorithms. We explore benchmarking DG methods in the linear probing setup for VLM and show some new insights. Last but not least, we show that VLMs, including GPT-4o, have subpar color recognition capabilities, and fine-tuning with MegaCOIN can result in improved performance on visual evaluation tasks. In certain cases, MegaCOIN fine-tuned small-scale opensource models such as LLaVA and Bunny can outperform closed-source GPT-4o. We hope the utilities of MegaCOIN can shed light on the directions VLMs can improve and provide a more complex platform for domain generalization algorithms.


Behavioral Bias of Vision-Language Models: A Behavioral Finance View

arXiv.org Artificial Intelligence

Large Vision-Language Models (LVLMs) evolve rapidly as Large Language Models (LLMs) was equipped with vision modules to create more human-like models. However, we should carefully evaluate their applications in different domains, as they may possess undesired biases. Our work studies the potential behavioral biases of LVLMs from a behavioral finance perspective, an interdisciplinary subject that jointly considers finance and psychology. We propose an end-to-end framework, from data collection to new evaluation metrics, to assess LVLMs' reasoning capabilities and the dynamic behaviors manifested in two established human financial behavioral biases: recency bias and authority bias. Our evaluations find that recent open-source LVLMs such as LLaVA-NeXT, MobileVLM-V2, Mini-Gemini, MiniCPM-Llama3-V 2.5 and Phi-3-vision-128k suffer significantly from these two biases, while the proprietary model GPT-4o is negligibly impacted. Our observations highlight directions in which open-source models can improve. The code is available at https://github.com/mydcxiao/vlm_behavioral_fin.


VideoPoet: A Large Language Model for Zero-Shot Video Generation

arXiv.org Artificial Intelligence

We present VideoPoet, a language model capable of synthesizing high-quality video, with matching audio, from a large variety of conditioning signals. VideoPoet employs a decoder-only transformer architecture that processes multimodal inputs -- including images, videos, text, and audio. The training protocol follows that of Large Language Models (LLMs), consisting of two stages: pretraining and task-specific adaptation. During pretraining, VideoPoet incorporates a mixture of multimodal generative objectives within an autoregressive Transformer framework. The pretrained LLM serves as a foundation that can be adapted for a range of video generation tasks. We present empirical results demonstrating the model's state-of-the-art capabilities in zero-shot video generation, specifically highlighting VideoPoet's ability to generate high-fidelity motions. Project page: http://sites.research.google/videopoet/