Ching-An Cheng
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng, Byron Boots
Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian process model that decouples the representation of mean and covariance functions in reproducing kernel Hilbert space. We show that this new parametrization generalizes previous models. Furthermore, it yields a variational inference problem that can be solved by stochastic gradient ascent with time and space complexity that is only linear in the number of mean function parameters, regardless of the choice of kernels, likelihoods, and inducing points. This strategy makes the adoption of largescale expressive Gaussian process models possible. We run several experiments on regression tasks and show that this decoupled approach greatly outperforms previous sparse variational Gaussian process inference procedures.
Incremental Variational Sparse Gaussian Process Regression
Ching-An Cheng, Byron Boots
Recent work on scaling up Gaussian process regression (GPR) to large datasets has primarily focused on sparse GPR, which leverages a small set of basis functions to approximate the full Gaussian process during inference. However, the majority of these approaches are batch methods that operate on the entire training dataset at once, precluding the use of datasets that are streaming or too large to fit into memory. Although previous work has considered incrementally solving variational sparse GPR, most algorithms fail to update the basis functions and therefore perform suboptimally. We propose a novel incremental learning algorithm for variational sparse GPR based on stochastic mirror ascent of probability densities in reproducing kernel Hilbert space. This new formulation allows our algorithm to update basis functions online in accordance with the manifold structure of probability densities for fast convergence. We conduct several experiments and show that our proposed approach achieves better empirical performance in terms of prediction error than the recent state-of-the-art incremental solutions to variational sparse GPR.
Variational Inference for Gaussian Process Models with Linear Complexity
Ching-An Cheng, Byron Boots
Large-scale Gaussian process inference has long faced practical challenges due to time and space complexity that is superlinear in dataset size. While sparse variational Gaussian process models are capable of learning from large-scale data, standard strategies for sparsifying the model can prevent the approximation of complex functions. In this work, we propose a novel variational Gaussian process model that decouples the representation of mean and covariance functions in reproducing kernel Hilbert space. We show that this new parametrization generalizes previous models. Furthermore, it yields a variational inference problem that can be solved by stochastic gradient ascent with time and space complexity that is only linear in the number of mean function parameters, regardless of the choice of kernels, likelihoods, and inducing points. This strategy makes the adoption of largescale expressive Gaussian process models possible. We run several experiments on regression tasks and show that this decoupled approach greatly outperforms previous sparse variational Gaussian process inference procedures.