Goto

Collaborating Authors

 Child, Rewon


Generating Long Sequences with Sparse Transformers

arXiv.org Machine Learning

Transformers are powerful sequence models, but require time and memory that grows quadratically with the sequence length. In this paper we introduce sparse factorizations of the attention matrix which reduce this to $O(n \sqrt{n})$. We also introduce a) a variation on architecture and initialization to train deeper networks, b) the recomputation of attention matrices to save memory, and c) fast attention kernels for training. We call networks with these changes Sparse Transformers, and show they can model sequences tens of thousands of timesteps long using hundreds of layers. We use the same architecture to model images, audio, and text from raw bytes, setting a new state of the art for density modeling of Enwik8, CIFAR-10, and ImageNet-64. We generate unconditional samples that demonstrate global coherence and great diversity, and show it is possible in principle to use self-attention to model sequences of length one million or more.


Convolutional Recurrent Neural Networks for Small-Footprint Keyword Spotting

arXiv.org Artificial Intelligence

Keyword spotting (KWS) constitutes a major component of human-technology interfaces. Maximizing the detection accuracy at a low false alarm (FA) rate, while minimizing the footprint size, latency and complexity are the goals for KWS. Towards achieving them, we study Convolutional Recurrent Neural Networks (CRNNs). Inspired by large-scale state-of-the-art speech recognition systems, we combine the strengths of convolutional layers and recurrent layers to exploit local structure and long-range context. We analyze the effect of architecture parameters, and propose training strategies to improve performance. With only ~230k parameters, our CRNN model yields acceptably low latency, and achieves 97.71% accuracy at 0.5 FA/hour for 5 dB signal-to-noise ratio.


Active Learning for Speech Recognition: the Power of Gradients

arXiv.org Machine Learning

In training speech recognition systems, labeling audio clips can be expensive, and not all data is equally valuable. Active learning aims to label only the most informative samples to reduce cost. For speech recognition, confidence scores and other likelihood-based active learning methods have been shown to be effective. Gradient-based active learning methods, however, are still not well-understood. This work investigates the Expected Gradient Length (EGL) approach in active learning for end-to-end speech recognition. We justify EGL from a variance reduction perspective, and observe that EGL's measure of informativeness picks novel samples uncorrelated with confidence scores. Experimentally, we show that EGL can reduce word errors by 11\%, or alternatively, reduce the number of samples to label by 50\%, when compared to random sampling.