Goto

Collaborating Authors

 Chib, Pranav Singh


Pedestrian Trajectory Prediction with Missing Data: Datasets, Imputation, and Benchmarking

arXiv.org Artificial Intelligence

Pedestrian trajectory prediction is crucial for several applications such as robotics and self-driving vehicles. Significant progress has been made in the past decade thanks to the availability of pedestrian trajectory datasets, which enable trajectory prediction methods to learn from pedestrians' past movements and predict future trajectories. However, these datasets and methods typically assume that the observed trajectory sequence is complete, ignoring real-world issues such as sensor failure, occlusion, and limited fields of view that can result in missing values in observed trajectories. To address this challenge, we present TrajImpute, a pedestrian trajectory prediction dataset that simulates missing coordinates in the observed trajectory, enhancing real-world applicability. TrajImpute maintains a uniform distribution of missing data within the observed trajectories. In this work, we comprehensively examine several imputation methods to reconstruct the missing coordinates and benchmark them for imputing pedestrian trajectories. Furthermore, we provide a thorough analysis of recent trajectory prediction methods and evaluate the performance of these models on the imputed trajectories. Our experimental evaluation of the imputation and trajectory prediction methods offers several valuable insights. Our dataset provides a foundational resource for future research on imputation-aware pedestrian trajectory prediction, potentially accelerating the deployment of these methods in real-world applications.


LG-Traj: LLM Guided Pedestrian Trajectory Prediction

arXiv.org Artificial Intelligence

Accurate pedestrian trajectory prediction is crucial for various applications, and it requires a deep understanding of pedestrian motion patterns in dynamic environments. However, existing pedestrian trajectory prediction methods still need more exploration to fully leverage these motion patterns. This paper investigates the possibilities of using Large Language Models (LLMs) to improve pedestrian trajectory prediction tasks by inducing motion cues. We introduce LG-Traj, a novel approach incorporating LLMs to generate motion cues present in pedestrian past/observed trajectories. Our approach also incorporates motion cues present in pedestrian future trajectories by clustering future trajectories of training data using a mixture of Gaussians. These motion cues, along with pedestrian coordinates, facilitate a better understanding of the underlying representation. Furthermore, we utilize singular value decomposition to augment the observed trajectories, incorporating them into the model learning process to further enhance representation learning. Our method employs a transformer-based architecture comprising a motion encoder to model motion patterns and a social decoder to capture social interactions among pedestrians. We demonstrate the effectiveness of our approach on popular pedestrian trajectory prediction benchmarks, namely ETH-UCY and SDD, and present various ablation experiments to validate our approach.


Enhancing Trajectory Prediction through Self-Supervised Waypoint Noise Prediction

arXiv.org Artificial Intelligence

Trajectory prediction is an important task that involves modeling the indeterminate nature of traffic actors to forecast future trajectories given the observed trajectory sequences. However, current methods confine themselves to presumed data manifolds, assuming that trajectories strictly adhere to these manifolds, resulting in overly simplified predictions. To this end, we propose a novel approach called SSWNP (Self-Supervised Waypoint Noise Prediction). In our approach, we first create clean and noise-augmented views of past observed trajectories across the spatial domain of waypoints. We then compel the trajectory prediction model to maintain spatial consistency between predictions from these two views, in addition to the trajectory prediction task. Introducing the noise-augmented view mitigates the model's reliance on a narrow interpretation of the data manifold, enabling it to learn more plausible and diverse representations. We also predict the noise present in the two views of past observed trajectories as an auxiliary self-supervised task, enhancing the model's understanding of the underlying representation and future predictions. Empirical evidence demonstrates that the incorporation of SSWNP into the model learning process significantly improves performance, even in noisy environments, when compared to baseline methods. Our approach can complement existing trajectory prediction methods. To showcase the effectiveness of our approach, we conducted extensive experiments on three datasets: NBA Sports VU, ETH-UCY, and TrajNet++, with experimental results highlighting the substantial improvement achieved in trajectory prediction tasks.


Improving Trajectory Prediction in Dynamic Multi-Agent Environment by Dropping Waypoints

arXiv.org Artificial Intelligence

The inherently diverse and uncertain nature of trajectories presents a formidable challenge in accurately modeling them. Motion prediction systems must effectively learn spatial and temporal information from the past to forecast the future trajectories of the agent. Many existing methods learn temporal motion via separate components within stacked models to capture temporal features. Furthermore, prediction methods often operate under the assumption that observed trajectory waypoint sequences are complete, disregarding scenarios where missing values may occur, which can influence their performance. Moreover, these models may be biased toward particular waypoint sequences when making predictions. We propose a novel approach called Temporal Waypoint Dropping (TWD) that explicitly incorporates temporal dependencies during the training of a trajectory prediction model. By stochastically dropping waypoints from past observed trajectories, the model is forced to learn the underlying temporal representation from the remaining waypoints, resulting in an improved model. Incorporating stochastic temporal waypoint dropping into the model learning process significantly enhances its performance in scenarios with missing values. Experimental results demonstrate our approach's substantial improvement in trajectory prediction capabilities. Our approach can complement existing trajectory prediction methods to improve their prediction accuracy. We evaluate our proposed approach on three datasets: NBA Sports VU, ETH-UCY, and TrajNet++.


Recent Advancements in End-to-End Autonomous Driving using Deep Learning: A Survey

arXiv.org Artificial Intelligence

End-to-End driving is a promising paradigm as it circumvents the drawbacks associated with modular systems, such as their overwhelming complexity and propensity for error propagation. Autonomous driving transcends conventional traffic patterns by proactively recognizing critical events in advance, ensuring passengers' safety and providing them with comfortable transportation, particularly in highly stochastic and variable traffic settings. This paper presents a comprehensive review of the End-to-End autonomous driving stack. It provides a taxonomy of automated driving tasks wherein neural networks have been employed in an End-to-End manner, encompassing the entire driving process from perception to control, while addressing key challenges encountered in real-world applications. Recent developments in End-to-End autonomous driving are analyzed, and research is categorized based on underlying principles, methodologies, and core functionality. These categories encompass sensorial input, main and auxiliary output, learning approaches ranging from imitation to reinforcement learning, and model evaluation techniques. The survey incorporates a detailed discussion of the explainability and safety aspects. Furthermore, it assesses the state-of-the-art, identifies challenges, and explores future possibilities. We maintained the latest advancements and their corresponding open-source implementations at https://github.com/Pranav-chib/Recent-Advancements-in-End-to-End-Autonomous-Driving-using-Deep-Learning.