Goto

Collaborating Authors

 Chhatwal, Jagpreet


The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: an ISPOR Working Group Report

arXiv.org Artificial Intelligence

Introduction. Generative Artificial Intelligence, particularly large language models (LLMs), offers transformative potential for Health Economics and Outcomes Research (HEOR). However, evaluating the quality, transparency, and rigor of LLM-assisted research lacks standardized guidance. This article introduces the ELEVATE AI LLMs framework and checklist, designed to support researchers and reviewers in assessing LLM use in HEOR. Methods. The ELEVATE AI LLMs framework was developed through a targeted review of existing guidelines and evaluation frameworks. The framework comprises ten evaluation domains, including model characteristics, accuracy, comprehensiveness, and fairness. The accompanying checklist operationalizes the framework. To validate the framework, we applied it to two published studies, demonstrating its usability across different HEOR tasks. Results. The ELEVATE AI LLMs framework provides a comprehensive structure for evaluating LLM-assisted research, while the checklist facilitates practical application. Validation of the framework and checklist on studies of systematic literature reviews and health economic modeling highlighted their ability to identify strengths and gaps in reporting. Limitations. While the ELEVATE AI LLMs framework provides robust guidance, its broader generalizability and applicability to diverse HEOR tasks require further empirical testing. Additionally, several metrics adapted from computer science need further validation in HEOR contexts. Conclusion. The ELEVATE AI LLMs framework and checklist fill a critical gap in HEOR by offering structured guidance for evaluating LLM-assisted research. By promoting transparency, accuracy, and reproducibility, they aim to standardize and improve the integration of LLMs into HEOR, ensuring their outputs meet the field's rigorous standards.


Generative AI in Health Economics and Outcomes Research: A Taxonomy of Key Definitions and Emerging Applications, an ISPOR Working Group Report

arXiv.org Artificial Intelligence

Objective: This article offers a taxonomy of generative artificial intelligence (AI) for health economics and outcomes research (HEOR), explores its emerging applications, and outlines methods to enhance the accuracy and reliability of AI-generated outputs. Methods: The review defines foundational generative AI concepts and highlights current HEOR applications, including systematic literature reviews, health economic modeling, real-world evidence generation, and dossier development. Approaches such as prompt engineering (zero-shot, few-shot, chain-of-thought, persona pattern prompting), retrieval-augmented generation, model fine-tuning, and the use of domain-specific models are introduced to improve AI accuracy and reliability. Results: Generative AI shows significant potential in HEOR, enhancing efficiency, productivity, and offering novel solutions to complex challenges. Foundation models are promising in automating complex tasks, though challenges remain in scientific reliability, bias, interpretability, and workflow integration. The article discusses strategies to improve the accuracy of these AI tools. Conclusion: Generative AI could transform HEOR by increasing efficiency and accuracy across various applications. However, its full potential can only be realized by building HEOR expertise and addressing the limitations of current AI technologies. As AI evolves, ongoing research and innovation will shape its future role in the field.


Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations

arXiv.org Artificial Intelligence

This review introduces the transformative potential of generative Artificial Intelligence (AI) and foundation models, including large language models (LLMs), for health technology assessment (HTA). We explore their applications in four critical areas, evidence synthesis, evidence generation, clinical trials and economic modeling: (1) Evidence synthesis: Generative AI has the potential to assist in automating literature reviews and meta-analyses by proposing search terms, screening abstracts, and extracting data with notable accuracy; (2) Evidence generation: These models can potentially facilitate automating the process and analyze the increasingly available large collections of real-world data (RWD), including unstructured clinical notes and imaging, enhancing the speed and quality of real-world evidence (RWE) generation; (3) Clinical trials: Generative AI can be used to optimize trial design, improve patient matching, and manage trial data more efficiently; and (4) Economic modeling: Generative AI can also aid in the development of health economic models, from conceptualization to validation, thus streamlining the overall HTA process. Despite their promise, these technologies, while rapidly improving, are still nascent and continued careful evaluation in their applications to HTA is required. To ensure their responsible use and implementation, both developers and users of research incorporating these tools, should familiarize themselves with their current limitations, including the issues related to scientific validity, risk of bias, and consider equity and ethical implications. We also surveyed the current policy landscape and provide suggestions for HTA agencies on responsibly integrating generative AI into their workflows, emphasizing the importance of human oversight and the fast-evolving nature of these tools.


Small Area Estimation of Case Growths for Timely COVID-19 Outbreak Detection

arXiv.org Machine Learning

The COVID-19 pandemic has exerted a profound impact on the global economy and continues to exact a significant toll on human lives. The COVID-19 case growth rate stands as a key epidemiological parameter to estimate and monitor for effective detection and containment of the resurgence of outbreaks. A fundamental challenge in growth rate estimation and hence outbreak detection is balancing the accuracy-speed tradeoff, where accuracy typically degrades with shorter fitting windows. In this paper, we develop a machine learning (ML) algorithm, which we call Transfer Learning Generalized Random Forest (TLGRF), that balances this accuracy-speed tradeoff. Specifically, we estimate the instantaneous COVID-19 exponential growth rate for each U.S. county by using TLGRF that chooses an adaptive fitting window size based on relevant day-level and county-level features affecting the disease spread. Through transfer learning, TLGRF can accurately estimate case growth rates for counties with small sample sizes. Out-of-sample prediction analysis shows that TLGRF outperforms established growth rate estimation methods. Furthermore, we conducted a case study based on outbreak case data from the state of Colorado and showed that the timely detection of outbreaks could have been improved by up to 224% using TLGRF when compared to the decisions made by Colorado's Department of Health and Environment (CDPHE). To facilitate implementation, we have developed a publicly available outbreak detection tool for timely detection of COVID-19 outbreaks in each U.S. county, which received substantial attention from policymakers.