Goto

Collaborating Authors

 Cherubin, Giovanni


Are you still on track!? Catching LLM Task Drift with Activations

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are routinely used in retrieval-augmented applications to orchestrate tasks and process inputs from users and other sources. These inputs, even in a single LLM interaction, can come from a variety of sources, of varying trustworthiness and provenance. This opens the door to prompt injection attacks, where the LLM receives and acts upon instructions from supposedly data-only sources, thus deviating from the user's original instructions. We define this as task drift, and we propose to catch it by scanning and analyzing the LLM's activations. We compare the LLM's activations before and after processing the external input in order to detect whether this input caused instruction drift. We develop two probing methods and find that simply using a linear classifier can detect drift with near perfect ROC AUC on an out-of-distribution test set. We show that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions, without being trained on any of these attacks. Our setup does not require any modification of the LLM (e.g., fine-tuning) or any text generation, thus maximizing deployability and cost efficiency and avoiding reliance on unreliable model output. To foster future research on activation-based task inspection, decoding, and interpretability, we will release our large-scale TaskTracker toolkit, comprising a dataset of over 500K instances, representations from 4 SoTA language models, and inspection tools.


Closed-Form Bounds for DP-SGD against Record-level Inference

arXiv.org Artificial Intelligence

Machine learning models trained with differentially-private (DP) algorithms such as DP-SGD enjoy resilience against a wide range of privacy attacks. Although it is possible to derive bounds for some attacks based solely on an $(\varepsilon,\delta)$-DP guarantee, meaningful bounds require a small enough privacy budget (i.e., injecting a large amount of noise), which results in a large loss in utility. This paper presents a new approach to evaluate the privacy of machine learning models against specific record-level threats, such as membership and attribute inference, without the indirection through DP. We focus on the popular DP-SGD algorithm, and derive simple closed-form bounds. Our proofs model DP-SGD as an information theoretic channel whose inputs are the secrets that an attacker wants to infer (e.g., membership of a data record) and whose outputs are the intermediate model parameters produced by iterative optimization. We obtain bounds for membership inference that match state-of-the-art techniques, whilst being orders of magnitude faster to compute. Additionally, we present a novel data-dependent bound against attribute inference. Our results provide a direct, interpretable, and practical way to evaluate the privacy of trained models against specific inference threats without sacrificing utility.


SoK: Let the Privacy Games Begin! A Unified Treatment of Data Inference Privacy in Machine Learning

arXiv.org Artificial Intelligence

Deploying machine learning models in production may allow adversaries to infer sensitive information about training data. There is a vast literature analyzing different types of inference risks, ranging from membership inference to reconstruction attacks. Inspired by the success of games (i.e., probabilistic experiments) to study security properties in cryptography, some authors describe privacy inference risks in machine learning using a similar game-based style. However, adversary capabilities and goals are often stated in subtly different ways from one presentation to the other, which makes it hard to relate and compose results. In this paper, we present a game-based framework to systematize the body of knowledge on privacy inference risks in machine learning. We use this framework to (1) provide a unifying structure for definitions of inference risks, (2) formally establish known relations among definitions, and (3) to uncover hitherto unknown relations that would have been difficult to spot otherwise.


Approximating Full Conformal Prediction at Scale via Influence Functions

arXiv.org Artificial Intelligence

Conformal prediction (CP) is a wrapper around traditional machine learning models, giving coverage guarantees under the sole assumption of exchangeability; in classification problems, for a chosen significance level $\varepsilon$, CP guarantees that the error rate is at most $\varepsilon$, irrespective of whether the underlying model is misspecified. However, the prohibitive computational costs of "full" CP led researchers to design scalable alternatives, which alas do not attain the same guarantees or statistical power of full CP. In this paper, we use influence functions to efficiently approximate full CP. We prove that our method is a consistent approximation of full CP, and empirically show that the approximation error becomes smaller as the training set increases; e.g., for $10^{3}$ training points the two methods output p-values that are $<10^{-3}$ apart: a negligible error for any practical application. Our methods enable scaling full CP to large real-world datasets. We compare our full CP approximation (ACP) to mainstream CP alternatives, and observe that our method is computationally competitive whilst enjoying the statistical predictive power of full CP.