Not enough data to create a plot.
Try a different view from the menu above.
Chertkov, Michael
Gauging Variational Inference
Ahn, Sung-Soo, Chertkov, Michael, Shin, Jinwoo
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used in practice, where mean-field (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments indeed confirm that the proposed algorithms outperform and generalize MF and BP.
Optimal structure and parameter learning of Ising models
Lokhov, Andrey Y., Vuffray, Marc, Misra, Sidhant, Chertkov, Michael
Reconstruction of structure and parameters of an Ising model from binary samples is a problem of practical importance in a variety of disciplines, ranging from statistical physics and computational biology to image processing and machine learning. The focus of the research community shifted towards developing universal reconstruction algorithms which are both computationally efficient and require the minimal amount of expensive data. We introduce a new method, Interaction Screening, which accurately estimates the model parameters using local optimization problems. The algorithm provably achieves perfect graph structure recovery with an information-theoretically optimal number of samples, notably in the low-temperature regime which is known to be the hardest for learning. The efficacy of Interaction Screening is assessed through extensive numerical tests on synthetic Ising models of various topologies with different types of interactions, as well as on a real data produced by a D-Wave quantum computer. This study shows that the Interaction Screening method is an exact, tractable and optimal technique universally solving the inverse Ising problem.
Online Learning of Power Transmission Dynamics
Lokhov, Andrey Y., Vuffray, Marc, Shemetov, Dmitry, Deka, Deepjyoti, Chertkov, Michael
We consider the problem of reconstructing the dynamic state matrix of transmission power grids from time-stamped PMU measurements in the regime of ambient fluctuations. Using a maximum likelihood based approach, we construct a family of convex estimators that adapt to the structure of the problem depending on the available prior information. The proposed method is fully data-driven and does not assume any knowledge of system parameters. It can be implemented in near real-time and requires a small amount of data. Our learning algorithms can be used for model validation and calibration, and can also be applied to related problems of system stability, detection of forced oscillations, generation re-dispatch, as well as to the estimation of the system state.
Belief Propagation Min-Sum Algorithm for Generalized Min-Cost Network Flow
Riazanov, Andrii, Maximov, Yury, Chertkov, Michael
Belief Propagation algorithms are instruments used broadly to solve graphical model optimization and statistical inference problems. In the general case of a loopy Graphical Model, Belief Propagation is a heuristic which is quite successful in practice, even though its empirical success, typically, lacks theoretical guarantees. This paper extends the short list of special cases where correctness and/or convergence of a Belief Propagation algorithm is proven. We generalize formulation of Min-Sum Network Flow problem by relaxing the flow conservation (balance) constraints and then proving that the Belief Propagation algorithm converges to the exact result.
Gauging Variational Inference
Ahn, Sungsoo, Chertkov, Michael, Shin, Jinwoo
Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where mean-field (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.
Topology Estimation in Bulk Power Grids: Guarantees on Exact Recovery
Deka, Deepjyoti, Talukdar, Saurav, Chertkov, Michael, Salapaka, Murti
The topology of a power grid affects its dynamic operation and settlement in the electricity market. Real-time topology identification can enable faster control action following an emergency scenario like failure of a line. This article discusses a graphical model framework for topology estimation in bulk power grids (both loopy transmission and radial distribution) using measurements of voltage collected from the grid nodes. The graphical model for the probability distribution of nodal voltages in linear power flow models is shown to include additional edges along with the operational edges in the true grid. Our proposed estimation algorithms first learn the graphical model and subsequently extract the operational edges using either thresholding or a neighborhood counting scheme. For grid topologies containing no three-node cycles (two buses do not share a common neighbor), we prove that an exact extraction of the operational topology is theoretically guaranteed. This includes a majority of distribution grids that have radial topologies. For grids that include cycles of length three, we provide sufficient conditions that ensure existence of algorithms for exact reconstruction. In particular, for grids with constant impedance per unit length and uniform injection covariances, this observation leads to conditions on geographical placement of the buses. The performance of algorithms is demonstrated in test case simulations.
Synthesis of MCMC and Belief Propagation
Ahn, Sung-Soo, Chertkov, Michael, Shin, Jinwoo
Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we, first, propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops. Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series. The main novelty underlying our design is in utilizing the concept of cycle basis, which provides an efficient decomposition of the generalized loops. In essence, the proposed MCMC schemes run on transformed GM built upon the non-trivial BP solution, and our experiments show that this synthesis of BP and MCMC outperforms both direct MCMC and bare BP schemes.
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models
Vuffray, Marc, Misra, Sidhant, Lokhov, Andrey, Chertkov, Michael
We consider the problem of learning the underlying graph of an unknown Ising model on p spins from a collection of i.i.d. samples generated from the model. We suggest a new estimator that is computationally efficient and requires a number of samples that is near-optimal with respect to previously established information theoretic lower-bound. Our statistical estimator has a physical interpretation in terms of "interaction screening". The estimator is consistent and is efficiently implemented using convex optimization. We prove that with appropriate regularization, the estimator recovers the underlying graph using a number of samples that is logarithmic in the system size p and exponential in the maximum coupling-intensity and maximum node-degree.
Interaction Screening: Efficient and Sample-Optimal Learning of Ising Models
Vuffray, Marc, Misra, Sidhant, Lokhov, Andrey Y., Chertkov, Michael
We consider the problem of learning the underlying graph of an unknown Ising model on p spins from a collection of i.i.d. samples generated from the model. We suggest a new estimator that is computationally efficient and requires a number of samples that is near-optimal with respect to previously established information-theoretic lower-bound. Our statistical estimator has a physical interpretation in terms of "interaction screening". The estimator is consistent and is efficiently implemented using convex optimization. We prove that with appropriate regularization, the estimator recovers the underlying graph using a number of samples that is logarithmic in the system size p and exponential in the maximum coupling-intensity and maximum node-degree.
MCMC assisted by Belief Propagaion
Ahn, Sungsoo, Chertkov, Michael, Shin, Jinwoo
Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of accuracy over loopy graphs. In this paper, we introduce MCMC algorithms correcting the approximation error of BP, i.e., we provide a way to compensate for BP errors via a consecutive BP-aware MCMC. Our framework is based on the Loop Calculus (LC) approach which allows to express the BP error as a sum of weighted generalized loops. Although the full series is computationally intractable, it is known that a truncated series, summing up all 2-regular loops, is computable in polynomial-time for planar pair-wise binary GMs and it also provides a highly accurate approximation empirically. Motivated by this, we first propose a polynomial-time approximation MCMC scheme for the truncated series of general (non-planar) pair-wise binary models. Our main idea here is to use the Worm algorithm, known to provide fast mixing in other (related) problems, and then design an appropriate rejection scheme to sample 2-regular loops. Furthermore, we also design an efficient rejection-free MCMC scheme for approximating the full series. The main novelty underlying our design is in utilizing the concept of cycle basis, which provides an efficient decomposition of the generalized loops. In essence, the proposed MCMC schemes run on transformed GM built upon the non-trivial BP solution, and our experiments show that this synthesis of BP and MCMC outperforms both direct MCMC and bare BP schemes.