Cherti, Mehdi
Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models
Nezhurina, Marianna, Cipolina-Kun, Lucia, Cherti, Mehdi, Jitsev, Jenia
Large Language Models (LLMs) are often described as being instances of foundation models - that is, models that transfer strongly across various tasks and conditions in few-show or zero-shot manner, while exhibiting scaling laws that predict function improvement when increasing the pre-training scale. These claims of excelling in different functions and tasks rely on measurements taken across various sets of standardized benchmarks showing high scores for such models. We demonstrate here a dramatic breakdown of function and reasoning capabilities of state-of-the-art models trained at the largest available scales which claim strong function, using a simple, short, conventional common sense problem (AIW problem) formulated in concise natural language, easily solvable by humans. The breakdown is dramatic, as models show strong fluctuations across even slight problem variations that should not affect problem solving, also expressing strong overconfidence in the wrong solutions, often backed up by plausible sounding explanation-like confabulations. Various standard interventions in an attempt to get the right solution, like various type of enhanced prompting, or urging the models to reconsider the wrong solutions again by multi step re-evaluation, fail. We take these initial observations to the scientific and technological community to stimulate urgent re-assessment of the claimed capabilities of current generation of LLMs. Such re-assessment also requires common action to create standardized benchmarks that would allow proper detection of such basic reasoning deficits that obviously manage to remain undiscovered by current state-of-the-art evaluation procedures and benchmarks. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/AIW
DataComp: In search of the next generation of multimodal datasets
Gadre, Samir Yitzhak, Ilharco, Gabriel, Fang, Alex, Hayase, Jonathan, Smyrnis, Georgios, Nguyen, Thao, Marten, Ryan, Wortsman, Mitchell, Ghosh, Dhruba, Zhang, Jieyu, Orgad, Eyal, Entezari, Rahim, Daras, Giannis, Pratt, Sarah, Ramanujan, Vivek, Bitton, Yonatan, Marathe, Kalyani, Mussmann, Stephen, Vencu, Richard, Cherti, Mehdi, Krishna, Ranjay, Koh, Pang Wei, Saukh, Olga, Ratner, Alexander, Song, Shuran, Hajishirzi, Hannaneh, Farhadi, Ali, Beaumont, Romain, Oh, Sewoong, Dimakis, Alex, Jitsev, Jenia, Carmon, Yair, Shankar, Vaishaal, Schmidt, Ludwig
Multimodal datasets are a critical component in recent breakthroughs such as Stable Diffusion and GPT-4, yet their design does not receive the same research attention as model architectures or training algorithms. To address this shortcoming in the ML ecosystem, we introduce DataComp, a testbed for dataset experiments centered around a new candidate pool of 12.8 billion image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing the resulting model on 38 downstream test sets. Our benchmark consists of multiple compute scales spanning four orders of magnitude, which enables the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow leads to better training sets. In particular, our best baseline, DataComp-1B, enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet, outperforming OpenAI's CLIP ViT-L/14 by 3.7 percentage points while using the same training procedure and compute. We release DataComp and all accompanying code at www.datacomp.ai.
A Comparative Study on Generative Models for High Resolution Solar Observation Imaging
Cherti, Mehdi, Czernik, Alexander, Kesselheim, Stefan, Effenberger, Frederic, Jitsev, Jenia
Solar activity is one of the main drivers of variability in our solar system and the key source of space weather phenomena that affect Earth and near Earth space. The extensive record of high resolution extreme ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) offers an unprecedented, very large dataset of solar images. In this work, we make use of this comprehensive dataset to investigate capabilities of current state-of-the-art generative models to accurately capture the data distribution behind the observed solar activity states. Starting from StyleGAN-based methods, we uncover severe deficits of this model family in handling fine-scale details of solar images when training on high resolution samples, contrary to training on natural face images. When switching to the diffusion based generative model family, we observe strong improvements of fine-scale detail generation. For the GAN family, we are able to achieve similar improvements in fine-scale generation when turning to ProjectedGANs, which uses multi-scale discriminators with a pre-trained frozen feature extractor. We conduct ablation studies to clarify mechanisms responsible for proper fine-scale handling. Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts, as suggested by the evaluation we conduct. We make all code, models and workflows used in this study publicly available at \url{https://github.com/SLAMPAI/generative-models-for-highres-solar-images}.
Reproducible scaling laws for contrastive language-image learning
Cherti, Mehdi, Beaumont, Romain, Wightman, Ross, Wortsman, Mitchell, Ilharco, Gabriel, Gordon, Cade, Schuhmann, Christoph, Schmidt, Ludwig, Jitsev, Jenia
Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data \& models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study will be available at https://github.com/LAION-AI/scaling-laws-openclip
Effect of large-scale pre-training on full and few-shot transfer learning for natural and medical images
Cherti, Mehdi, Jitsev, Jenia
Transfer learning aims to exploit pre-trained models for more efficient follow-up training on wide range of downstream tasks and datasets, enabling successful training also on small data. Recent line of work posits strong benefits for model generalization and transfer when model size, data size, and compute budget are increased for the pre-training. It remains however still largely unclear whether the observed transfer improvement due to increase in scale also holds when source and target data distributions are far apart from each other. In this work we conduct large-scale pre-training on large source datasets of either natural (ImageNet-21k/1k) or medical chest X-Ray images and compare full and few-shot transfer using different target datasets from both natural and medical imaging domains. Our observations provide evidence that while pre-training and transfer on closely related datasets do show clear benefit of increasing model and data size during pre-training, such benefits are not clearly visible when source and target datasets are further apart. These observations hold across both full and few-shot transfer and indicate that scaling laws pointing to improvement of generalization and transfer with increasing model and data size are incomplete and should be revised by taking into account the type and proximity of the source and target data, to correctly predict the effect of model and data scale during pre-training on transfer. Remarkably, in full shot transfer to a large X-Ray chest imaging target (PadChest), the largest model pre-trained on ImageNet-21k slightly outperforms best models pre-trained on large X-Ray chest imaging data. This indicates possibility to obtain high quality models for domain-specific transfer even without access to large domain-specific data, by pre-training instead on comparably very large, generic source data.
InsectUp: Crowdsourcing Insect Observations to Assess Demographic Shifts and Improve Classification
Boussioux, Léonard, Giro-Larraz, Tomás, Guille-Escuret, Charles, Cherti, Mehdi, Kégl, Balázs
Insects play such a crucial role in ecosystems that a shift in demography of just a few species can have devastating consequences at environmental, social and economic levels. Despite this, evaluation of insect demography is strongly limited by the difficulty of collecting census data at sufficient scale. We propose a method to gather and leverage observations from bystanders, hikers, and entomology enthusiasts in order to provide researchers with data that could significantly help anticipate and identify environmental threats. Finally, we show that there is indeed interest on both sides for such collaboration.
Spurious samples in deep generative models: bug or feature?
Kégl, Balázs, Cherti, Mehdi, Kazakçı, Akın
Traditional wisdom in generative modeling literature is that spurious samples that a model can generate are errors and they should be avoided. Recent research, however, has shown interest in studying or even exploiting such samples instead of eliminating them. In this paper, we ask the question whether such samples can be eliminated all together without sacrificing coverage of the generating distribution. For the class of models we consider, we experimentally demonstrate that this is not possible without losing the ability to model some of the test samples. While our results need to be confirmed on a broader set of model families, these initial findings provide partial evidence that spurious samples share structural properties with the learned dataset, which, in turn, suggests they are not simply errors but a feature of deep generative nets.