Chersoni, Emmanuele
Sparse Brains are Also Adaptive Brains: Cognitive-Load-Aware Dynamic Activation for LLMs
Yang, Yiheng, Wang, Yujie, Ma, Chi, Yu, Lei, Chersoni, Emmanuele, Huang, Chu-Ren
Dense large language models(LLMs) face critical efficiency bottlenecks as they rigidly activate all parameters regardless of input complexity. While existing sparsity methods(static pruning or dynamic activation) address this partially, they either lack adaptivity to contextual or model structural demands or incur prohibitive computational overhead. Inspired by human brain's dual-process mechanisms - predictive coding (N400) for backbone sparsity and structural reanalysis (P600) for complex context - we propose CLADA, a \textit{\textbf{C}ognitive-\textbf{L}oad-\textbf{A}ware \textbf{D}ynamic \textbf{A}ctivation} framework that synergizes statistical sparsity with semantic adaptability. Our key insight is that LLM activations exhibit two complementary patterns: 1) \textit{Global statistical sparsity} driven by sequence-level prefix information, and 2) \textit{Local semantic adaptability} modulated by cognitive load metrics(e.g., surprisal and entropy). CLADA employs a hierarchical thresholding strategy: a baseline from offline error-controlled optimization ensures 40\%+ sparsity, dynamically adjusted by real-time cognitive signals. Evaluations across six mainstream LLMs and nine benchmarks demonstrate that CLADA achieves \textbf{~20\% average speedup with <2\% accuracy drop}, outperforming Griffin (5\%+ degradation) and TT (negligible speedup). Crucially, we establish the first formal connection between neurolinguistic event-related potential (ERP) components and LLM efficiency mechanisms through multi-level regression analysis ($R^2=0.17$ for sparsity-adaptation synergy). Requiring no retraining or architectural changes, CLADA offers a deployable solution for resource-aware LLM inference while advancing biologically-inspired AI design. Our code is available at \href{https://github.com/Oldify/CLADA}{CLADA}.
ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models
Miliani, Martina, Auriemma, Serena, Bondielli, Alessandro, Chersoni, Emmanuele, Passaro, Lucia, Sucameli, Irene, Lenci, Alessandro
Large Language Models (LLMs) are increasingly used in tasks requiring interpretive and inferential accuracy. In this paper, we introduce ExpliCa, a new dataset for evaluating LLMs in explicit causal reasoning. ExpliCa uniquely integrates both causal and temporal relations presented in different linguistic orders and explicitly expressed by linguistic connectives. The dataset is enriched with crowdsourced human acceptability ratings. We tested LLMs on ExpliCa through prompting and perplexity-based metrics. We assessed seven commercial and open-source LLMs, revealing that even top models struggle to reach 0.80 accuracy. Interestingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events. Finally, perplexity-based scores and prompting performance are differently affected by model size.
Composing or Not Composing? Towards Distributional Construction Grammars
Blache, Philippe, Chersoni, Emmanuele, Rambelli, Giulia, Lenci, Alessandro
The mechanisms of comprehension during language processing remains an open question. Classically, building the meaning of a linguistic utterance is said to be incremental, step-by-step, based on a compositional process. However, many different works have shown for a long time that non-compositional phenomena are also at work. It is therefore necessary to propose a framework bringing together both approaches. We present in this paper an approach based on Construction Grammars and completing this framework in order to account for these different mechanisms. We propose first a formal definition of this framework by completing the feature structure representation proposed in Sign-Based Construction Grammars. In a second step, we present a general representation of the meaning based on the interaction of constructions, frames and events. This framework opens the door to a processing mechanism for building the meaning based on the notion of activation evaluated in terms of similarity and unification. This new approach integrates features from distributional semantics into the constructionist framework, leading to what we call Distributional Construction Grammars.
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines
Winata, Genta Indra, Hudi, Frederikus, Irawan, Patrick Amadeus, Anugraha, David, Putri, Rifki Afina, Wang, Yutong, Nohejl, Adam, Prathama, Ubaidillah Ariq, Ousidhoum, Nedjma, Amriani, Afifa, Rzayev, Anar, Das, Anirban, Pramodya, Ashmari, Adila, Aulia, Wilie, Bryan, Mawalim, Candy Olivia, Cheng, Ching Lam, Abolade, Daud, Chersoni, Emmanuele, Santus, Enrico, Ikhwantri, Fariz, Kuwanto, Garry, Zhao, Hanyang, Wibowo, Haryo Akbarianto, Lovenia, Holy, Cruz, Jan Christian Blaise, Putra, Jan Wira Gotama, Myung, Junho, Susanto, Lucky, Machin, Maria Angelica Riera, Zhukova, Marina, Anugraha, Michael, Adilazuarda, Muhammad Farid, Santosa, Natasha, Limkonchotiwat, Peerat, Dabre, Raj, Audino, Rio Alexander, Cahyawijaya, Samuel, Zhang, Shi-Xiong, Salim, Stephanie Yulia, Zhou, Yi, Gui, Yinxuan, Adelani, David Ifeoluwa, Lee, En-Shiun Annie, Okada, Shogo, Purwarianti, Ayu, Aji, Alham Fikri, Watanabe, Taro, Wijaya, Derry Tanti, Oh, Alice, Ngo, Chong-Wah
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.
Comparing Plausibility Estimates in Base and Instruction-Tuned Large Language Models
Kauf, Carina, Chersoni, Emmanuele, Lenci, Alessandro, Fedorenko, Evelina, Ivanova, Anna A.
Instruction-tuned LLMs can respond to explicit queries formulated as prompts, which greatly facilitates interaction with human users. However, prompt-based approaches might not always be able to tap into the wealth of implicit knowledge acquired by LLMs during pre-training. This paper presents a comprehensive study of ways to evaluate semantic plausibility in LLMs. We compare base and instruction-tuned LLM performance on an English sentence plausibility task via (a) explicit prompting and (b) implicit estimation via direct readout of the probabilities models assign to strings. Experiment 1 shows that, across model architectures and plausibility datasets, (i) log likelihood ($\textit{LL}$) scores are the most reliable indicator of sentence plausibility, with zero-shot prompting yielding inconsistent and typically poor results; (ii) $\textit{LL}$-based performance is still inferior to human performance; (iii) instruction-tuned models have worse $\textit{LL}$-based performance than base models. In Experiment 2, we show that $\textit{LL}$ scores across models are modulated by context in the expected way, showing high performance on three metrics of context-sensitive plausibility and providing a direct match to explicit human plausibility judgments. Overall, $\textit{LL}$ estimates remain a more reliable measure of plausibility in LLMs than direct prompting.
Event knowledge in large language models: the gap between the impossible and the unlikely
Kauf, Carina, Ivanova, Anna A., Rambelli, Giulia, Chersoni, Emmanuele, She, Jingyuan Selena, Chowdhury, Zawad, Fedorenko, Evelina, Lenci, Alessandro
Word co-occurrence patterns in language corpora contain a surprising amount of conceptual knowledge. Large language models (LLMs), trained to predict words in context, leverage these patterns to achieve impressive performance on diverse semantic tasks requiring world knowledge. An important but understudied question about LLMs' semantic abilities is whether they acquire generalized knowledge of common events. Here, we test whether five pre-trained LLMs (from 2018's BERT to 2023's MPT) assign higher likelihood to plausible descriptions of agent-patient interactions than to minimally different implausible versions of the same event. Using three curated sets of minimal sentence pairs (total n=1,215), we found that pre-trained LLMs possess substantial event knowledge, outperforming other distributional language models. In particular, they almost always assign higher likelihood to possible vs. impossible events (The teacher bought the laptop vs. The laptop bought the teacher). However, LLMs show less consistent preferences for likely vs. unlikely events (The nanny tutored the boy vs. The boy tutored the nanny). In follow-up analyses, we show that (i) LLM scores are driven by both plausibility and surface-level sentence features, (ii) LLM scores generalize well across syntactic variants (active vs. passive constructions) but less well across semantic variants (synonymous sentences), (iii) some LLM errors mirror human judgment ambiguity, and (iv) sentence plausibility serves as an organizing dimension in internal LLM representations. Overall, our results show that important aspects of event knowledge naturally emerge from distributional linguistic patterns, but also highlight a gap between representations of possible/impossible and likely/unlikely events.
Extensive Evaluation of Transformer-based Architectures for Adverse Drug Events Extraction
Scaboro, Simone, Portellia, Beatrice, Chersoni, Emmanuele, Santus, Enrico, Serra, Giuseppe
Adverse Event (ADE) extraction is one of the core tasks in digital pharmacovigilance, especially when applied to informal texts. This task has been addressed by the Natural Language Processing community using large pre-trained language models, such as BERT. Despite the great number of Transformer-based architectures used in the literature, it is unclear which of them has better performances and why. Therefore, in this paper we perform an extensive evaluation and analysis of 19 Transformer-based models for ADE extraction on informal texts. We compare the performance of all the considered models on two datasets with increasing levels of informality (forums posts and tweets). We also combine the purely Transformer-based models with two commonly-used additional processing layers (CRF and LSTM), and analyze their effect on the models performance. Furthermore, we use a well-established feature importance technique (SHAP) to correlate the performance of the models with a set of features that describe them: model category (AutoEncoding, AutoRegressive, Text-to-Text), pretraining domain, training from scratch, and model size in number of parameters. At the end of our analyses, we identify a list of take-home messages that can be derived from the experimental data.
Empirical Sufficiency Lower Bounds for Language Modeling with Locally-Bootstrapped Semantic Structures
Prange, Jakob, Chersoni, Emmanuele
In this work we build upon negative results from an attempt at language modeling with predicted semantic structure, in order to establish empirical lower bounds on what could have made the attempt successful. More specifically, we design a concise binary vector representation of semantic structure at the lexical level and evaluate in-depth how good an incremental tagger needs to be in order to achieve better-than-baseline performance with an end-to-end semantic-bootstrapping language model. We envision such a system as consisting of a (pretrained) sequential-neural component and a hierarchical-symbolic component working together to generate text with low surprisal and high linguistic interpretability. We find that (a) dimensionality of the semantic vector representation can be dramatically reduced without losing its main advantages and (b) lower bounds on prediction quality cannot be established via a single score alone, but need to take the distributions of signal and noise into account.