Goto

Collaborating Authors

 Cherep, Manuel


Bridging the Data Provenance Gap Across Text, Speech and Video

arXiv.org Artificial Intelligence

Progress in AI is driven largely by the scale and quality of training data. Despite this, there is a deficit of empirical analysis examining the attributes of well-established datasets beyond text. In this work we conduct the largest and first-of-its-kind longitudinal audit across modalities--popular text, speech, and video datasets--from their detailed sourcing trends and use restrictions to their geographical and linguistic representation. Our manual analysis covers nearly 4000 public datasets between 1990-2024, spanning 608 languages, 798 sources, 659 organizations, and 67 countries. We find that multimodal machine learning applications have overwhelmingly turned to web-crawled, synthetic, and social media platforms, such as YouTube, for their training sets, eclipsing all other sources since 2019. Secondly, tracing the chain of dataset derivations we find that while less than 33% of datasets are restrictively licensed, over 80% of the source content in widely-used text, speech, and video datasets, carry non-commercial restrictions. Finally, counter to the rising number of languages and geographies represented in public AI training datasets, our audit demonstrates measures of relative geographical and multilingual representation have failed to significantly improve their coverage since 2013. We believe the breadth of our audit enables us to empirically examine trends in data sourcing, restrictions, and Western-centricity at an ecosystem-level, and that visibility into these questions are essential to progress in responsible AI. As a contribution to ongoing improvements in dataset transparency and responsible use, we release our entire multimodal audit, allowing practitioners to trace data provenance across text, speech, and video.


Contrastive Learning from Synthetic Audio Doppelgangers

arXiv.org Artificial Intelligence

Learning robust audio representations currently demands extensive datasets of real-world sound recordings. By applying artificial transformations to these recordings, models can learn to recognize similarities despite subtle variations through techniques like contrastive learning. However, these transformations are only approximations of the true diversity found in real-world sounds, which are generated by complex interactions of physical processes, from vocal cord vibrations to the resonance of musical instruments. We propose a solution to both the data scale and transformation limitations, leveraging synthetic audio. By randomly perturbing the parameters of a sound synthesizer, we generate audio doppelg\"angers-synthetic positive pairs with causally manipulated variations in timbre, pitch, and temporal envelopes. These variations, difficult to achieve through transformations of existing audio, provide a rich source of contrastive information. Despite the shift to randomly generated synthetic data, our method produces strong representations, competitive with real data on standard audio classification benchmarks. Notably, our approach is lightweight, requires no data storage, and has only a single hyperparameter, which we extensively analyze. We offer this method as a complement to existing strategies for contrastive learning in audio, using synthesized sounds to reduce the data burden on practitioners.


Creative Text-to-Audio Generation via Synthesizer Programming

arXiv.org Artificial Intelligence

Neural audio synthesis methods now allow specifying ideas in natural language. However, these methods produce results that cannot be easily tweaked, as they are based on large latent spaces and up to billions of uninterpretable parameters. We propose a text-to-audio generation method that leverages a virtual modular sound synthesizer with only 78 parameters. Synthesizers have long been used by skilled sound designers for media like music and film due to their flexibility and intuitive controls. Our method, CTAG, iteratively updates a synthesizer's parameters to produce high-quality audio renderings of text prompts that can be easily inspected and tweaked. Sounds produced this way are also more abstract, capturing essential conceptual features over fine-grained acoustic details, akin to how simple sketches can vividly convey visual concepts. Our results show how CTAG produces sounds that are distinctive, perceived as artistic, and yet similarly identifiable to recent neural audio synthesis models, positioning it as a valuable and complementary tool.