Cheng Zhang
Generalizing Tree Probability Estimation via Bayesian Networks
Cheng Zhang, Frederick A Matsen IV
Probability estimation is one of the fundamental tasks in statistics and machine learning. However, standard methods for probability estimation on discrete objects do not handle object structure in a satisfactory manner. In this paper, we derive a general Bayesian network formulation for probability estimation on leaf-labeled trees that enables flexible approximations which can generalize beyond observations. We show that efficient algorithms for learning Bayesian networks can be easily extended to probability estimation on this challenging structured space. Experiments on both synthetic and real data show that our methods greatly outperform the current practice of using the empirical distribution, as well as a previous effort for probability estimation on trees.
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck
Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin, Katja Hofmann
The ability for policies to generalize to new environments is key to the broad application of RL agents. A promising approach to prevent an agent's policy from overfitting to a limited set of training environments is to apply regularization techniques originally developed for supervised learning. However, there are stark differences between supervised learning and RL. We discuss those differences and propose modifications to existing regularization techniques in order to better adapt them to RL. In particular, we focus on regularization techniques relying on the injection of noise into the learned function, a family that includes some of the most widely used approaches such as Dropout and Batch Normalization. To adapt them to RL, we propose Selective Noise Injection (SNI), which maintains the regularizing effect the injected noise has, while mitigating the adverse effects it has on the gradient quality. Furthermore, we demonstrate that the Information Bottleneck (IB) is a particularly well suited regularization technique for RL as it is effective in the low-data regime encountered early on in training RL agents. Combining the IB with SNI, we significantly outperform current state of the art results, including on the recently proposed generalization benchmark Coinrun.
Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation
Ruibo Tu, Kun Zhang, Bo Bertilson, Hedvig Kjellstrom, Cheng Zhang
Discovery of causal relations from observational data is essential for many disciplines of science and real-world applications. However, unlike other machine learning algorithms, whose development has been greatly fostered by a large amount of available benchmark datasets, causal discovery algorithms are notoriously difficult to be systematically evaluated because few datasets with known ground-truth causal relations are available. In this work, we handle the problem of evaluating causal discovery algorithms by building a flexible simulator in the medical setting. We develop a neuropathic pain diagnosis simulator, inspired by the fact that the biological processes of neuropathic pathophysiology are well studied with well-understood causal influences. Our simulator exploits the causal graph of the neuropathic pain pathology and its parameters in the generator are estimated from real-life patient cases. We show that the data generated from our simulator have similar statistics as real-world data. As a clear advantage, the simulator can produce infinite samples without jeopardizing the privacy of real-world patients. Our simulator provides a natural tool for evaluating various types of causal discovery algorithms, including those to deal with practical issues in causal discovery, such as unknown confounders, selection bias, and missing data. Using our simulator, we have evaluated extensively causal discovery algorithms under various settings.
Perturbative Black Box Variational Inference
Robert Bamler, Cheng Zhang, Manfred Opper, Stephan Mandt
Black box variational inference (BBVI) with reparameterization gradients triggered the exploration of divergence measures other than the Kullback-Leibler (KL) divergence, such as alpha divergences. In this paper, we view BBVI with generalized divergences as a form of estimating the marginal likelihood via biased importance sampling. The choice of divergence determines a bias-variance trade-off between the tightness of a bound on the marginal likelihood (low bias) and the variance of its gradient estimators. Drawing on variational perturbation theory of statistical physics, we use these insights to construct a family of new variational bounds. Enumerated by an odd integer order K, this family captures the standard KL bound for K = 1, and converges to the exact marginal likelihood as K . Compared to alpha-divergences, our reparameterization gradients have a lower variance. We show in experiments on Gaussian Processes and Variational Autoencoders that the new bounds are more mass covering, and that the resulting posterior covariances are closer to the true posterior and lead to higher likelihoods on held-out data.
Generalizing Tree Probability Estimation via Bayesian Networks
Cheng Zhang, Frederick A Matsen IV
Probability estimation is one of the fundamental tasks in statistics and machine learning. However, standard methods for probability estimation on discrete objects do not handle object structure in a satisfactory manner. In this paper, we derive a general Bayesian network formulation for probability estimation on leaf-labeled trees that enables flexible approximations which can generalize beyond observations. We show that efficient algorithms for learning Bayesian networks can be easily extended to probability estimation on this challenging structured space. Experiments on both synthetic and real data show that our methods greatly outperform the current practice of using the empirical distribution, as well as a previous effort for probability estimation on trees.