Cheng, Zhi-Qi
HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Dong, Yifei, Wu, Fengyi, He, Qi, Li, Heng, Li, Minghan, Cheng, Zebang, Zhou, Yuxuan, Sun, Jingdong, Dai, Qi, Cheng, Zhi-Qi, Hauptmann, Alexander G
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
MaxSup: Overcoming Representation Collapse in Label Smoothing
Zhou, Yuxuan, Li, Heng, Cheng, Zhi-Qi, Yan, Xudong, Fritz, Mario, Keuper, Margret
Label Smoothing (LS) is widely adopted to curb overconfidence in neural network predictions and enhance generalization. However, previous research shows that LS can force feature representations into excessively tight clusters, eroding intra-class distinctions. More recent findings suggest that LS also induces overconfidence in misclassifications, yet the precise mechanism remained unclear. In this work, we decompose the loss term introduced by LS, revealing two key components: (i) a regularization term that functions only when the prediction is correct, and (ii) an error-enhancement term that emerges under misclassifications. This latter term compels the model to reinforce incorrect predictions with exaggerated certainty, further collapsing the feature space. To address these issues, we propose Max Suppression (MaxSup), which uniformly applies the intended regularization to both correct and incorrect predictions by penalizing the top-1 logit instead of the ground-truth logit. Through feature analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Extensive experiments on image classification and downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization.
A Video-grounded Dialogue Dataset and Metric for Event-driven Activities
Imrattanatrai, Wiradee, Asada, Masaki, Hasegawa, Kimihiro, Cheng, Zhi-Qi, Fukuda, Ken, Mitamura, Teruko
This paper presents VDAct, a dataset for a Video-grounded Dialogue on Event-driven Activities, alongside VDEval, a session-based context evaluation metric specially designed for the task. Unlike existing datasets, VDAct includes longer and more complex video sequences that depict a variety of event-driven activities that require advanced contextual understanding for accurate response generation. The dataset comprises 3,000 dialogues with over 30,000 question-and-answer pairs, derived from 1,000 videos with diverse activity scenarios. VDAct displays a notably challenging characteristic due to its broad spectrum of activity scenarios and wide range of question types. Empirical studies on state-of-the-art vision foundation models highlight their limitations in addressing certain question types on our dataset. Furthermore, VDEval, which integrates dialogue session history and video content summaries extracted from our supplementary Knowledge Graphs to evaluate individual responses, demonstrates a significantly higher correlation with human assessments on the VDAct dataset than existing evaluation metrics that rely solely on the context of single dialogue turns.
StableAnimator: High-Quality Identity-Preserving Human Image Animation
Tu, Shuyuan, Xing, Zhen, Han, Xintong, Cheng, Zhi-Qi, Dai, Qi, Luo, Chong, Wu, Zuxuan
Current diffusion models for human image animation struggle to ensure identity (ID) consistency. This paper presents StableAnimator, the first end-to-end ID-preserving video diffusion framework, which synthesizes high-quality videos without any post-processing, conditioned on a reference image and a sequence of poses. Building upon a video diffusion model, StableAnimator contains carefully designed modules for both training and inference striving for identity consistency. In particular, StableAnimator begins by computing image and face embeddings with off-the-shelf extractors, respectively and face embeddings are further refined by interacting with image embeddings using a global content-aware Face Encoder. Then, StableAnimator introduces a novel distribution-aware ID Adapter that prevents interference caused by temporal layers while preserving ID via alignment. During inference, we propose a novel Hamilton-Jacobi-Bellman (HJB) equation-based optimization to further enhance the face quality. We demonstrate that solving the HJB equation can be integrated into the diffusion denoising process, and the resulting solution constrains the denoising path and thus benefits ID preservation. Experiments on multiple benchmarks show the effectiveness of StableAnimator both qualitatively and quantitatively.
ProMQA: Question Answering Dataset for Multimodal Procedural Activity Understanding
Hasegawa, Kimihiro, Imrattanatrai, Wiradee, Cheng, Zhi-Qi, Asada, Masaki, Holm, Susan, Wang, Yuran, Fukuda, Ken, Mitamura, Teruko
Multimodal systems have great potential to assist humans in procedural activities, where people follow instructions to achieve their goals. Despite diverse application scenarios, systems are typically evaluated on traditional classification tasks, e.g., action recognition or temporal action segmentation. In this paper, we present a novel evaluation dataset, ProMQA, to measure system advancements in application-oriented scenarios. ProMQA consists of 401 multimodal procedural QA pairs on user recording of procedural activities coupled with their corresponding instruction. For QA annotation, we take a cost-effective human-LLM collaborative approach, where the existing annotation is augmented with LLM-generated QA pairs that are later verified by humans. We then provide the benchmark results to set the baseline performance on ProMQA. Our experiment reveals a significant gap between human performance and that of current systems, including competitive proprietary multimodal models. We hope our dataset sheds light on new aspects of models' multimodal understanding capabilities.
Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Wang, Kai, Li, Zekai, Cheng, Zhi-Qi, Khaki, Samir, Sajedi, Ahmad, Vedantam, Ramakrishna, Plataniotis, Konstantinos N, Hauptmann, Alexander, You, Yang
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
MetaDesigner: Advancing Artistic Typography through AI-Driven, User-Centric, and Multilingual WordArt Synthesis
He, Jun-Yan, Cheng, Zhi-Qi, Li, Chenyang, Sun, Jingdong, He, Qi, Xiang, Wangmeng, Chen, Hanyuan, Lan, Jin-Peng, Lin, Xianhui, Zhu, Kang, Luo, Bin, Geng, Yifeng, Xie, Xuansong, Hauptmann, Alexander G.
MetaDesigner revolutionizes artistic typography synthesis by leveraging the strengths of Large Language Models (LLMs) to drive a design paradigm centered around user engagement. At the core of this framework lies a multi-agent system comprising the Pipeline, Glyph, and Texture agents, which collectively enable the creation of customized WordArt, ranging from semantic enhancements to the imposition of complex textures. MetaDesigner incorporates a comprehensive feedback mechanism that harnesses insights from multimodal models and user evaluations to refine and enhance the design process iteratively. Through this feedback loop, the system adeptly tunes hyperparameters to align with user-defined stylistic and thematic preferences, generating WordArt that not only meets but exceeds user expectations of visual appeal and contextual relevance. Empirical validations highlight MetaDesigner's capability to effectively serve diverse WordArt applications, consistently producing aesthetically appealing and context-sensitive results.
MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis
Li, Xiang, Cheng, Zhi-Qi, He, Jun-Yan, Peng, Xiaojiang, Hauptmann, Alexander G.
Emotional Text-to-Speech (E-TTS) synthesis has gained significant attention in recent years due to its potential to enhance human-computer interaction. However, current E-TTS approaches often struggle to capture the complexity of human emotions, primarily relying on oversimplified emotional labels or single-modality inputs. To address these limitations, we propose the Multimodal Emotional Text-to-Speech System (MM-TTS), a unified framework that leverages emotional cues from multiple modalities to generate highly expressive and emotionally resonant speech. MM-TTS consists of two key components: (1) the Emotion Prompt Alignment Module (EP-Align), which employs contrastive learning to align emotional features across text, audio, and visual modalities, ensuring a coherent fusion of multimodal information; and (2) the Emotion Embedding-Induced TTS (EMI-TTS), which integrates the aligned emotional embeddings with state-of-the-art TTS models to synthesize speech that accurately reflects the intended emotions. Extensive evaluations across diverse datasets demonstrate the superior performance of MM-TTS compared to traditional E-TTS models. Objective metrics, including Word Error Rate (WER) and Character Error Rate (CER), show significant improvements on ESD dataset, with MM-TTS achieving scores of 7.35% and 3.07%, respectively. Subjective assessments further validate that MM-TTS generates speech with emotional fidelity and naturalness comparable to human speech. Our code and pre-trained models are publicly available at https://anonymous.4open.science/r/MMTTS-D214
MIPS at SemEval-2024 Task 3: Multimodal Emotion-Cause Pair Extraction in Conversations with Multimodal Language Models
Cheng, Zebang, Niu, Fuqiang, Lin, Yuxiang, Cheng, Zhi-Qi, Zhang, Bowen, Peng, Xiaojiang
This paper presents our winning submission to Subtask 2 of SemEval 2024 Task 3 on multimodal emotion cause analysis in conversations. We propose a novel Multimodal Emotion Recognition and Multimodal Emotion Cause Extraction (MER-MCE) framework that integrates text, audio, and visual modalities using specialized emotion encoders. Our approach sets itself apart from top-performing teams by leveraging modality-specific features for enhanced emotion understanding and causality inference. Experimental evaluation demonstrates the advantages of our multimodal approach, with our submission achieving a competitive weighted F1 score of 0.3435, ranking third with a margin of only 0.0339 behind the 1st team and 0.0025 behind the 2nd team. Project: https://github.com/MIPS-COLT/MER-MCE.git
IVAC-P2L: Leveraging Irregular Repetition Priors for Improving Video Action Counting
Wang, Hang, Cheng, Zhi-Qi, Du, Youtian, Zhang, Lei
Video Action Counting (VAC) is crucial in analyzing sports, fitness, and everyday activities by quantifying repetitive actions in videos. However, traditional VAC methods have overlooked the complexity of action repetitions, such as interruptions and the variability in cycle duration. Our research addresses the shortfall by introducing a novel approach to VAC, called Irregular Video Action Counting (IVAC). IVAC prioritizes modeling irregular repetition patterns in videos, which we define through two primary aspects: Inter-cycle Consistency and Cycle-interval Inconsistency. Inter-cycle Consistency ensures homogeneity in the spatial-temporal representations of cycle segments, signifying action uniformity within cycles. Cycle-interval inconsistency highlights the importance of distinguishing between cycle segments and intervals based on their inherent content differences. To encapsulate these principles, we propose a new methodology that includes consistency and inconsistency modules, supported by a unique pull-push loss (P2L) mechanism. The IVAC-P2L model applies a pull loss to promote coherence among cycle segment features and a push loss to clearly distinguish features of cycle segments from interval segments. Empirical evaluations conducted on the RepCount dataset demonstrate that the IVAC-P2L model sets a new benchmark in VAC task performance. Furthermore, the model demonstrates exceptional adaptability and generalization across various video contents, outperforming existing models on two additional datasets, UCFRep and Countix, without the need for dataset-specific optimization. These results confirm the efficacy of our approach in addressing irregular repetitions in videos and pave the way for further advancements in video analysis and understanding.