Goto

Collaborating Authors

 Cheng, Yuheng


Multi-Objective Large Language Model Unlearning

arXiv.org Artificial Intelligence

Machine unlearning in the domain of large language models (LLMs) has attracted great attention recently, which aims to effectively eliminate undesirable behaviors from LLMs without full retraining from scratch. In this paper, we explore the Gradient Ascent (GA) approach in LLM unlearning, which is a proactive way to decrease the prediction probability of the model on the target data in order to remove their influence. We analyze two challenges that render the process impractical: gradient explosion and catastrophic forgetting. To address these issues, we propose Multi-Objective Large Language Model Unlearning (MOLLM) algorithm. We first formulate LLM unlearning as a multi-objective optimization problem, in which the cross-entropy loss is modified to the unlearning version to overcome the gradient explosion issue. A common descent update direction is then calculated, which enables the model to forget the target data while preserving the utility of the LLM. Our empirical results verify that MoLLM outperforms the SOTA GA-based LLM unlearning methods in terms of unlearning effect and model utility preservation. The source code is available at https://github.com/zibinpan/MOLLM.


ElecBench: a Power Dispatch Evaluation Benchmark for Large Language Models

arXiv.org Artificial Intelligence

In response to the urgent demand for grid stability and the complex challenges posed by renewable energy integration and electricity market dynamics, the power sector increasingly seeks innovative technological solutions. In this context, large language models (LLMs) have become a key technology to improve efficiency and promote intelligent progress in the power sector with their excellent natural language processing, logical reasoning, and generalization capabilities. Despite their potential, the absence of a performance evaluation benchmark for LLM in the power sector has limited the effective application of these technologies. Addressing this gap, our study introduces "ElecBench", an evaluation benchmark of LLMs within the power sector. ElecBench aims to overcome the shortcomings of existing evaluation benchmarks by providing comprehensive coverage of sector-specific scenarios, deepening the testing of professional knowledge, and enhancing decision-making precision. The framework categorizes scenarios into general knowledge and professional business, further divided into six core performance metrics: factuality, logicality, stability, security, fairness, and expressiveness, and is subdivided into 24 sub-metrics, offering profound insights into the capabilities and limitations of LLM applications in the power sector. To ensure transparency, we have made the complete test set public, evaluating the performance of eight LLMs across various scenarios and metrics. ElecBench aspires to serve as the standard benchmark for LLM applications in the power sector, supporting continuous updates of scenarios, metrics, and models to drive technological progress and application.


Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods

arXiv.org Artificial Intelligence

With extensive pre-trained knowledge and high-level general capabilities, large language models (LLMs) emerge as a promising avenue to augment reinforcement learning (RL) in aspects such as multi-task learning, sample efficiency, and task planning. In this survey, we provide a comprehensive review of the existing literature in $\textit{LLM-enhanced RL}$ and summarize its characteristics compared to conventional RL methods, aiming to clarify the research scope and directions for future studies. Utilizing the classical agent-environment interaction paradigm, we propose a structured taxonomy to systematically categorize LLMs' functionalities in RL, including four roles: information processor, reward designer, decision-maker, and generator. Additionally, for each role, we summarize the methodologies, analyze the specific RL challenges that are mitigated, and provide insights into future directions. Lastly, potential applications, prospective opportunities and challenges of the $\textit{LLM-enhanced RL}$ are discussed.


Exploring Large Language Model based Intelligent Agents: Definitions, Methods, and Prospects

arXiv.org Artificial Intelligence

Intelligent agents stand out as a potential path toward artificial general intelligence (AGI). Thus, researchers have dedicated significant effort to diverse implementations for them. Benefiting from recent progress in large language models (LLMs), LLM-based agents that use universal natural language as an interface exhibit robust generalization capabilities across various applications -- from serving as autonomous general-purpose task assistants to applications in coding, social, and economic domains, LLM-based agents offer extensive exploration opportunities. This paper surveys current research to provide an in-depth overview of LLM-based intelligent agents within single-agent and multi-agent systems. It covers their definitions, research frameworks, and foundational components such as their composition, cognitive and planning methods, tool utilization, and responses to environmental feedback. We also delve into the mechanisms of deploying LLM-based agents in multi-agent systems, including multi-role collaboration, message passing, and strategies to alleviate communication issues between agents. The discussions also shed light on popular datasets and application scenarios. We conclude by envisioning prospects for LLM-based agents, considering the evolving landscape of AI and natural language processing.


MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework

arXiv.org Artificial Intelligence

Remarkable progress has been made on automated problem solving through societies of agents based on large language models (LLMs). Existing LLM-based multi-agent systems can already solve simple dialogue tasks. Solutions to more complex tasks, however, are complicated through logic inconsistencies due to cascading hallucinations caused by naively chaining LLMs. Here we introduce MetaGPT, an innovative meta-programming framework incorporating efficient human workflows into LLM-based multi-agent collaborations. MetaGPT encodes Standardized Operating Procedures (SOPs) into prompt sequences for more streamlined workflows, thus allowing agents with human-like domain expertise to verify intermediate results and reduce errors. MetaGPT utilizes an assembly line paradigm to assign diverse roles to various agents, efficiently breaking down complex tasks into subtasks involving many agents working together. On collaborative software engineering benchmarks, MetaGPT generates more coherent solutions than previous chat-based multi-agent systems. Our project can be found at https://github.com/geekan/MetaGPT