Cheng, Qikai
Black-Box Opinion Manipulation Attacks to Retrieval-Augmented Generation of Large Language Models
Chen, Zhuo, Liu, Jiawei, Liu, Haotan, Cheng, Qikai, Zhang, Fan, Lu, Wei, Liu, Xiaozhong
Retrieval-Augmented Generation (RAG) is applied to solve hallucination problems and real-time constraints of large language models, but it also induces vulnerabilities against retrieval corruption attacks. Existing research mainly explores the unreliability of RAG in white-box and closed-domain QA tasks. In this paper, we aim to reveal the vulnerabilities of Retrieval-Enhanced Generative (RAG) models when faced with black-box attacks for opinion manipulation. We explore the impact of such attacks on user cognition and decision-making, providing new insight to enhance the reliability and security of RAG models. We manipulate the ranking results of the retrieval model in RAG with instruction and use these results as data to train a surrogate model. By employing adversarial retrieval attack methods to the surrogate model, black-box transfer attacks on RAG are further realized. Experiments conducted on opinion datasets across multiple topics show that the proposed attack strategy can significantly alter the opinion polarity of the content generated by RAG. This demonstrates the model's vulnerability and, more importantly, reveals the potential negative impact on user cognition and decision-making, making it easier to mislead users into accepting incorrect or biased information.
From Model-centered to Human-Centered: Revision Distance as a Metric for Text Evaluation in LLMs-based Applications
Ma, Yongqiang, Qing, Lizhi, Liu, Jiawei, Kang, Yangyang, Zhang, Yue, Lu, Wei, Liu, Xiaozhong, Cheng, Qikai
Evaluating large language models (LLMs) is fundamental, particularly in the context of practical applications. Conventional evaluation methods, typically designed primarily for LLM development, yield numerical scores that ignore the user experience. Therefore, our study shifts the focus from model-centered to human-centered evaluation in the context of AI-powered writing assistance applications. Our proposed metric, termed ``Revision Distance,'' utilizes LLMs to suggest revision edits that mimic the human writing process. It is determined by counting the revision edits generated by LLMs. Benefiting from the generated revision edit details, our metric can provide a self-explained text evaluation result in a human-understandable manner beyond the context-independent score. Our results show that for the easy-writing task, ``Revision Distance'' is consistent with established metrics (ROUGE, Bert-score, and GPT-score), but offers more insightful, detailed feedback and better distinguishes between texts. Moreover, in the context of challenging academic writing tasks, our metric still delivers reliable evaluations where other metrics tend to struggle. Furthermore, our metric also holds significant potential for scenarios lacking reference texts.
Let's Learn Step by Step: Enhancing In-Context Learning Ability with Curriculum Learning
Liu, Yinpeng, Liu, Jiawei, Shi, Xiang, Cheng, Qikai, Lu, Wei
Demonstration ordering, which is an important strategy for in-context learning (ICL), can significantly affects the performance of large language models (LLMs). However, most of the current approaches of ordering require additional knowledge and similarity calculation. We advocate the few-shot in-context curriculum learning (ICCL), a simple but effective demonstration ordering method for ICL, which implies gradually increasing the complexity of prompt demonstrations during the inference process. Then we design three experiments to discuss the effectiveness of ICCL, the formation mechanism of LLM's ICCL capability, and the impact of ordering subjects. Experimental results demonstrate that ICCL, developed during the instruction-tuning stage, is effective for open-source LLMs. Moreover, LLMs exhibit a weaker capacity compared to humans in discerning the difficulty levels of demonstrations. We release our code at https://github.com/61peng/curri_learning.
Know Where to Go: Make LLM a Relevant, Responsible, and Trustworthy Searcher
Shi, Xiang, Liu, Jiawei, Liu, Yinpeng, Cheng, Qikai, Lu, Wei
The advent of Large Language Models (LLMs) has shown the potential to improve relevance and provide direct answers in web searches. However, challenges arise in validating the reliability of generated results and the credibility of contributing sources, due to the limitations of traditional information retrieval algorithms and the LLM hallucination problem. Aiming to create a "PageRank" for the LLM era, we strive to transform LLM into a relevant, responsible, and trustworthy searcher. We propose a novel generative retrieval framework leveraging the knowledge of LLMs to foster a direct link between queries and online sources. This framework consists of three core modules: Generator, Validator, and Optimizer, each focusing on generating trustworthy online sources, verifying source reliability, and refining unreliable sources, respectively. Extensive experiments and evaluations highlight our method's superior relevance, responsibility, and trustfulness against various SOTA methods.
Low-Resource Multi-Granularity Academic Function Recognition Based on Multiple Prompt Knowledge
Liu, Jiawei, Xiong, Zi, Jiang, Yi, Ma, Yongqiang, Lu, Wei, Huang, Yong, Cheng, Qikai
Fine-tuning pre-trained language models (PLMs), e.g., SciBERT, generally requires large numbers of annotated data to achieve state-of-the-art performance on a range of NLP tasks in the scientific domain. However, obtaining the fine-tune data for scientific NLP task is still challenging and expensive. Inspired by recent advancement in prompt learning, in this paper, we propose the Mix Prompt Tuning (MPT), which is a semi-supervised method to alleviate the dependence on annotated data and improve the performance of multi-granularity academic function recognition tasks with a small number of labeled examples. Specifically, the proposed method provides multi-perspective representations by combining manual prompt templates with automatically learned continuous prompt templates to help the given academic function recognition task take full advantage of knowledge in PLMs. Based on these prompt templates and the fine-tuned PLM, a large number of pseudo labels are assigned to the unlabeled examples. Finally, we fine-tune the PLM using the pseudo training set. We evaluate our method on three academic function recognition tasks of different granularity including the citation function, the abstract sentence function, and the keyword function, with datasets from computer science domain and biomedical domain. Extensive experiments demonstrate the effectiveness of our method and statistically significant improvements against strong baselines. In particular, it achieves an average increase of 5% in Macro-F1 score compared with fine-tuning, and 6% in Macro-F1 score compared with other semi-supervised method under low-resource settings. In addition, MPT is a general method that can be easily applied to other low-resource scientific classification tasks.
AI vs. Human -- Differentiation Analysis of Scientific Content Generation
Ma, Yongqiang, Liu, Jiawei, Yi, Fan, Cheng, Qikai, Huang, Yong, Lu, Wei, Liu, Xiaozhong
Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns.