Cheng, Mingyue
A Survey on Knowledge-Oriented Retrieval-Augmented Generation
Cheng, Mingyue, Luo, Yucong, Ouyang, Jie, Liu, Qi, Liu, Huijie, Li, Li, Yu, Shuo, Zhang, Bohou, Cao, Jiawei, Ma, Jie, Wang, Daoyu, Chen, Enhong
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years for its potential to enhance natural language understanding and generation by combining large-scale retrieval systems with generative models. RAG leverages external knowledge sources, such as documents, databases, or structured data, to improve model performance and generate more accurate and contextually relevant outputs. This survey aims to provide a comprehensive overview of RAG by examining its fundamental components, including retrieval mechanisms, generation processes, and the integration between the two. We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge, and the challenges associated with aligning retrieved information with generative objectives. We also present a taxonomy that categorizes RAG methods, ranging from basic retrieval-augmented approaches to more advanced models incorporating multi-modal data and reasoning capabilities. Additionally, we review the evaluation benchmarks and datasets commonly used to assess RAG systems, along with a detailed exploration of its applications in fields such as question answering, summarization, and information retrieval. Finally, we highlight emerging research directions and opportunities for improving RAG systems, such as enhanced retrieval efficiency, model interpretability, and domain-specific adaptations. This paper concludes by outlining the prospects for RAG in addressing real-world challenges and its potential to drive further advancements in natural language processing.
HoH: A Dynamic Benchmark for Evaluating the Impact of Outdated Information on Retrieval-Augmented Generation
Ouyang, Jie, Pan, Tingyue, Cheng, Mingyue, Yan, Ruiran, Luo, Yucong, Lin, Jiaying, Liu, Qi
While Retrieval-Augmented Generation (RAG) has emerged as an effective approach for addressing the knowledge outdating problem in Large Language Models (LLMs), it faces a critical challenge: the prevalence of outdated information in knowledge bases. Current research primarily focuses on incorporating up-to-date information, yet the impact of outdated information coexisting in retrieval sources remains inadequately addressed. To bridge this gap, we introduce HoH, the first benchmark specifically designed to evaluate the impact of outdated information on RAG. Our benchmark leverages token-level diff algorithms combined with LLM pipelines to efficiently create a large-scale QA dataset that accurately captures temporal knowledge evolution in real-world facts. Through comprehensive experiments, we reveal that outdated information significantly degrades RAG performance in two critical ways: (1) it substantially reduces response accuracy by distracting models from correct information, and (2) it can mislead models into generating potentially harmful outputs, even when current information is available. Current RAG approaches struggle with both retrieval and generation aspects when handling outdated information. These findings highlight the urgent need for innovative solutions to address the temporal challenges in RAG.
Enhancing Table Recognition with Vision LLMs: A Benchmark and Neighbor-Guided Toolchain Reasoner
Zhou, Yitong, Cheng, Mingyue, Mao, Qingyang, Liu, Qi, Xu, Feiyang, Li, Xin, Chen, Enhong
Pre-trained foundation models have recently significantly progressed in structured table understanding and reasoning. However, despite advancements in areas such as table semantic understanding and table question answering, recognizing the structure and content of unstructured tables using Vision Large Language Models (VLLMs) remains under-explored. In this work, we address this research gap by employing VLLMs in a training-free reasoning paradigm. First, we design a benchmark with various hierarchical dimensions relevant to table recognition. Subsequently, we conduct in-depth evaluations using pre-trained VLLMs, finding that low-quality image input is a significant bottleneck in the recognition process. Drawing inspiration from these findings, we propose the Neighbor-Guided Toolchain Reasoner (NGTR) framework, which is characterized by integrating multiple lightweight models for low-level visual processing operations aimed at mitigating issues with low-quality input images. Specifically, we utilize a neighbor retrieval mechanism to guide the generation of multiple tool invocation plans, transferring tool selection experiences from similar neighbors to the given input, thereby facilitating suitable tool selection. Additionally, we introduce a reflection module to supervise the tool invocation process. Extensive experiments on public table recognition datasets demonstrate that our approach significantly enhances the recognition capabilities of the vanilla VLLMs. We believe that the designed benchmark and the proposed NGTR framework could provide an alternative solution in table recognition.
TextMatch: Enhancing Image-Text Consistency Through Multimodal Optimization
Luo, Yucong, Cheng, Mingyue, Ouyang, Jie, Tao, Xiaoyu, Liu, Qi
Text-to-image generative models excel in creating images from text but struggle with ensuring alignment and consistency between outputs and prompts. This paper introduces TextMatch, a novel framework that leverages multimodal optimization to address image-text discrepancies in text-to-image (T2I) generation and editing. TextMatch employs a scoring strategy powered by large language models (LLMs) and visual question-answering (VQA) models to evaluate semantic consistency between prompts and generated images. By integrating multimodal in-context learning and chain of thought reasoning, our method dynamically refines prompts through iterative optimization. This process ensures that the generated images better capture user intent of, resulting in higher fidelity and relevance. Extensive experiments demonstrate that TextMatch significantly improves text-image consistency across multiple benchmarks, establishing a reliable framework for advancing the capabilities of text-to-image generative models. Our code is available at https://anonymous.4open.science/r/TextMatch-F55C/.
Molar: Multimodal LLMs with Collaborative Filtering Alignment for Enhanced Sequential Recommendation
Luo, Yucong, Qin, Qitao, Zhang, Hao, Cheng, Mingyue, Yan, Ruiran, Wang, Kefan, Ouyang, Jie
Sequential recommendation (SR) systems have evolved significantly over the past decade, transitioning from traditional collaborative filtering to deep learning approaches and, more recently, to large language models (LLMs). While the adoption of LLMs has driven substantial advancements, these models inherently lack collaborative filtering information, relying primarily on textual content data neglecting other modalities and thus failing to achieve optimal recommendation performance. To address this limitation, we propose Molar, a Multimodal large language sequential recommendation framework that integrates multiple content modalities with ID information to capture collaborative signals effectively. Molar employs an MLLM to generate unified item representations from both textual and non-textual data, facilitating comprehensive multimodal modeling and enriching item embeddings. Additionally, it incorporates collaborative filtering signals through a post-alignment mechanism, which aligns user representations from content-based and ID-based models, ensuring precise personalization and robust performance. By seamlessly combining multimodal content with collaborative filtering insights, Molar captures both user interests and contextual semantics, leading to superior recommendation accuracy. Extensive experiments validate that Molar significantly outperforms traditional and LLM-based baselines, highlighting its strength in utilizing multimodal data and collaborative signals for sequential recommendation tasks. The source code is available at https://anonymous.4open.science/r/Molar-8B06/.
PoTable: Programming Standardly on Table-based Reasoning Like a Human Analyst
Mao, Qingyang, Liu, Qi, Li, Zhi, Cheng, Mingyue, Zhang, Zheng, Li, Rui
Table-based reasoning has garnered substantial research interest, particularly in its integration with Large Language Model (LLM) which has revolutionized the general reasoning paradigm. Numerous LLM-based studies introduce symbolic tools (e.g., databases, Python) as assistants to extend human-like abilities in structured table understanding and complex arithmetic computations. However, these studies can be improved better in simulating human cognitive behavior when using symbolic tools, as they still suffer from limitations of non-standard logical splits and constrained operation pools. In this study, we propose PoTable as a novel table-based reasoning method that simulates a human tabular analyst, which integrates a Python interpreter as the real-time executor accompanied by an LLM-based operation planner and code generator. Specifically, PoTable follows a human-like logical stage split and extends the operation pool into an open-world space without any constraints. Through planning and executing in each distinct stage, PoTable standardly completes the entire reasoning process and produces superior reasoning results along with highly accurate, steply commented and completely executable programs. Accordingly, the effectiveness and explainability of PoTable are fully demonstrated. Extensive experiments over three evaluation datasets from two public benchmarks on two backbones show the outstanding performance of our approach. In particular, GPT-based PoTable achieves over 4% higher absolute accuracy than runner-ups on all evaluation datasets.
TableTime: Reformulating Time Series Classification as Zero-Shot Table Understanding via Large Language Models
Wang, Jiahao, Cheng, Mingyue, Mao, Qingyang, Liu, Qi, Xu, Feiyang, Li, Xin, Chen, Enhong
Large language models (LLMs) have demonstrated their effectiveness in multivariate time series classification (MTSC). Effective adaptation of LLMs for MTSC necessitates informative data representations. Existing LLM-based methods directly encode embeddings for time series within the latent space of LLMs from scratch to align with semantic space of LLMs. Despite their effectiveness, we reveal that these methods conceal three inherent bottlenecks: (1) they struggle to encode temporal and channel-specific information in a lossless manner, both of which are critical components of multivariate time series; (2) it is much difficult to align the learned representation space with the semantic space of the LLMs; (3) they require task-specific retraining, which is both computationally expensive and labor-intensive. To bridge these gaps, we propose TableTime, which reformulates MTSC as a table understanding task. Specifically, TableTime introduces the following strategies: (1) convert multivariate time series into a tabular form, thus minimizing information loss to the greatest extent; (2) represent tabular time series in text format to achieve natural alignment with the semantic space of LLMs; (3) design a reasoning framework that integrates contextual text information, neighborhood assistance, multi-path inference and problem decomposition to enhance the reasoning ability of LLMs and realize zero-shot classification. Extensive experiments performed on 10 publicly representative datasets from UEA archive verify the superiorities of the TableTime.
Diffusion Auto-regressive Transformer for Effective Self-supervised Time Series Forecasting
Wang, Daoyu, Cheng, Mingyue, Liu, Zhiding, Liu, Qi, Chen, Enhong
Self-supervised learning has become a popular and effective approach for enhancing time series forecasting, enabling models to learn universal representations from unlabeled data. However, effectively capturing both the global sequence dependence and local detail features within time series data remains challenging. To address this, we propose a novel generative self-supervised method called TimeDART, denoting Diffusion Auto-regressive Transformer for Time series forecasting. In TimeDART, we treat time series patches as basic modeling units. Specifically, we employ an self-attention based Transformer encoder to model the dependencies of inter-patches. Additionally, we introduce diffusion and denoising mechanisms to capture the detail locality features of intra-patch. Notably, we design a cross-attention-based denoising decoder that allows for adjustable optimization difficulty in the self-supervised task, facilitating more effective self-supervised pre-training. Furthermore, the entire model is optimized in an auto-regressive manner to obtain transferable representations. Extensive experiments demonstrate that TimeDART achieves state-of-the-art fine-tuning performance compared to the most advanced competitive methods in forecasting tasks. Time series forecasting (Harvey, 1990; Hamilton, 2020; Box et al., 2015; Cheng et al., 2024b) is crucial in a wide array of domains, including finance (Black & Scholes, 1973), healthcare (Cheng et al., 2024c), energy management (Zhou et al., 2024). Accurate predictions of future data points could enable better decision-making, resource allocation, and risk management, ultimately leading to significant operational improvements and strategic advantages. Among the various methods developed for time series forecasting (Miller et al., 2024), deep neural networks (Ding et al., 2024; Jin et al., 2023; Cao et al., 2023; Cheng et al., 2024b) have emerged as a popular and effective solution paradigm. To further enhance the performance of time series forecasting, self-supervised learning has become an increasingly popular research paradigm (Nie et al., 2022).
Multi-Source Knowledge Pruning for Retrieval-Augmented Generation: A Benchmark and Empirical Study
Yu, Shuo, Cheng, Mingyue, Yang, Jiqian, Ouyang, Jie, Luo, Yucong, Lei, Chenyi, Liu, Qi, Chen, Enhong
Retrieval-augmented generation (RAG) is increasingly recognized as an effective approach for mitigating the hallucination of large language models (LLMs) through the integration of external knowledge. While numerous efforts, most studies focus on a single type of externeal knowledge source. However, in real-world applications, most situations involve diverse knowledge from various sources, yet this area has been less explored. The main dilemma is the lack of a suitable dataset containing multiple knowledge sources and pre-exploration of the associated issues. To address these challenges, we standardize a benchmark dataset that combines structured and unstructured knowledge across diverse and complementary domains. Based on this dataset, we further develop a plug-and-play RAG framework, PruningRAG, whose main characteristic is to employ multi-granularity pruning strategies for optimizing the integration of relevant information and minimizing misleading context. Building upon the standardized dataset and PruningRAG, we also report a series of experimental results, as well as insightful findings. Our dataset and code are publicly available\footnote{https://github.com/USTCAGI/PruningRAG}, with the aim of advancing future research in the RAG community.
FDF: Flexible Decoupled Framework for Time Series Forecasting with Conditional Denoising and Polynomial Modeling
Zhang, Jintao, Cheng, Mingyue, Tao, Xiaoyu, Liu, Zhiding, Wang, Daoyu
Time series forecasting is vital in numerous web applications, influencing critical decision-making across industries. While diffusion models have recently gained increasing popularity for this task, we argue they suffer from a significant drawback: indiscriminate noise addition to the original time series followed by denoising, which can obscure underlying dynamic evolving trend and complicate forecasting. To address this limitation, we propose a novel flexible decoupled framework (FDF) that learns high-quality time series representations for enhanced forecasting performance. A key characteristic of our approach leverages the inherent inductive bias of time series data of its decomposed trend and seasonal components, each modeled separately to enable decoupled analysis and modeling. Specifically, we propose an innovative Conditional Denoising Seasonal Module (CDSM) within the diffusion model, which leverages statistical information from the historical window to conditionally model the complex seasonal component. Notably, we incorporate a Polynomial Trend Module (PTM) to effectively capture the smooth trend component, thereby enhancing the model's ability to represent temporal dependencies. Extensive experiments validate the effectiveness of our framework, demonstrating superior performance over existing methods and highlighting its flexibility in time series forecasting. The source code is available at https://github.com/zjt-gpu/FDF.