Cheng, Luyao
OmniFlatten: An End-to-end GPT Model for Seamless Voice Conversation
Zhang, Qinglin, Cheng, Luyao, Deng, Chong, Chen, Qian, Wang, Wen, Zheng, Siqi, Liu, Jiaqing, Yu, Hai, Tan, Chaohong, Du, Zhihao, Zhang, Shiliang
Full-duplex spoken dialogue systems significantly surpass traditional turn-based dialogue systems, as they allow simultaneous bidirectional communication, closely mirroring human-human interactions. However, achieving low latency and natural interactions in full-duplex dialogue systems remains a significant challenge, especially considering human conversation dynamics such as interruptions, backchannels, and overlapping speech. In this paper, we introduce a novel End-to-End GPT-based model OmniFlatten for full-duplex conversation, capable of effectively modeling the complex behaviors inherent to natural conversations with low latency. To achieve full-duplex conversation capabilities, we propose a multi-stage post-training scheme that progressively adapts a text large language model (LLM) backbone into a speech-text dialogue LLM, capable of generating text and speech in real time, without modifying the architecture of the backbone LLM. The training process comprises three stages: modality alignment, half-duplex dialogue learning, and full-duplex dialogue learning. In all training stages, we standardize the data using a flattening operation, which enables unifying the training methods and the GPT backbone across different modalities and tasks. Our approach offers a simple modeling technique and a promising research direction for developing efficient and natural end-to-end full-duplex spoken dialogue systems. Audio samples of dialogues generated by OmniFlatten can be found at this web site (https://omniflatten.github.io/).
Improving Speaker Diarization using Semantic Information: Joint Pairwise Constraints Propagation
Cheng, Luyao, Zheng, Siqi, Zhang, Qinglin, Wang, Hui, Chen, Yafeng, Chen, Qian, Zhang, Shiliang
Speaker diarization has gained considerable attention within speech processing research community. Mainstream speaker diarization rely primarily on speakers' voice characteristics extracted from acoustic signals and often overlook the potential of semantic information. Considering the fact that speech signals can efficiently convey the content of a speech, it is of our interest to fully exploit these semantic cues utilizing language models. In this work we propose a novel approach to effectively leverage semantic information in clustering-based speaker diarization systems. Firstly, we introduce spoken language understanding modules to extract speaker-related semantic information and utilize these information to construct pairwise constraints. Secondly, we present a novel framework to integrate these constraints into the speaker diarization pipeline, enhancing the performance of the entire system. Extensive experiments conducted on the public dataset demonstrate the consistent superiority of our proposed approach over acoustic-only speaker diarization systems.
3D-Speaker: A Large-Scale Multi-Device, Multi-Distance, and Multi-Dialect Corpus for Speech Representation Disentanglement
Zheng, Siqi, Cheng, Luyao, Chen, Yafeng, Wang, Hui, Chen, Qian
Disentangling uncorrelated information in speech utterances is a crucial research topic within speech community. Different speech-related tasks focus on extracting distinct speech representations while minimizing the affects of other uncorrelated information. We present a large-scale speech corpus to facilitate the research of speech representation disentanglement. 3D-Speaker contains over 10,000 speakers, each of whom are simultaneously recorded by multiple Devices, locating at different Distances, and some speakers are speaking multiple Dialects. The controlled combinations of multi-dimensional audio data yield a matrix of a diverse blend of speech representation entanglement, thereby motivating intriguing methods to untangle them. The multi-domain nature of 3D-Speaker also makes it a suitable resource to evaluate large universal speech models and experiment methods of out-of-domain learning and self-supervised learning. https://3dspeaker.github.io/
Exploring Speaker-Related Information in Spoken Language Understanding for Better Speaker Diarization
Cheng, Luyao, Zheng, Siqi, Qinglin, Zhang, Wang, Hui, Chen, Yafeng, Chen, Qian
Speaker diarization(SD) is a classic task in speech processing and is crucial in multi-party scenarios such as meetings and conversations. Current mainstream speaker diarization approaches consider acoustic information only, which result in performance degradation when encountering adverse acoustic conditions. In this paper, we propose methods to extract speaker-related information from semantic content in multi-party meetings, which, as we will show, can further benefit speaker diarization. We introduce two sub-tasks, Dialogue Detection and Speaker-Turn Detection, in which we effectively extract speaker information from conversational semantics. We also propose a simple yet effective algorithm to jointly model acoustic and semantic information and obtain speaker-identified texts. Experiments on both AISHELL-4 and AliMeeting datasets show that our method achieves consistent improvements over acoustic-only speaker diarization systems.