Goto

Collaborating Authors

 Chen, Zhiyu


Wizard of Shopping: Target-Oriented E-commerce Dialogue Generation with Decision Tree Branching

arXiv.org Artificial Intelligence

The goal of conversational product search (CPS) is to develop an intelligent, chat-based shopping assistant that can directly interact with customers to understand shopping intents, ask clarification questions, and find relevant products. However, training such assistants is hindered mainly due to the lack of reliable and large-scale datasets. Prior human-annotated CPS datasets are extremely small in size and lack integration with real-world product search systems. We propose a novel approach, TRACER, which leverages large language models (LLMs) to generate realistic and natural conversations for different shopping domains. TRACER's novelty lies in grounding the generation to dialogue plans, which are product search trajectories predicted from a decision tree model, that guarantees relevant product discovery in the shortest number of search conditions. We also release the first target-oriented CPS dataset Wizard of Shopping (WoS), containing highly natural and coherent conversations (3.6k) from three shopping domains. Finally, we demonstrate the quality and effectiveness of WoS via human evaluations and downstream tasks.


Can video generation replace cinematographers? Research on the cinematic language of generated video

arXiv.org Artificial Intelligence

Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance the visual coherence of videos generated from textual descriptions. However, most research has primarily focused on object motion, with limited attention given to cinematic language in videos, which is crucial for cinematographers to convey emotion and narrative pacing. To address this limitation, we propose a threefold approach to enhance the ability of T2V models to generate controllable cinematic language. Specifically, we introduce a cinematic language dataset that encompasses shot framing, angle, and camera movement, enabling models to learn diverse cinematic styles. Building on this, to facilitate robust cinematic alignment evaluation, we present CameraCLIP, a model fine-tuned on the proposed dataset that excels in understanding complex cinematic language in generated videos and can further provide valuable guidance in the multi-shot composition process. Finally, we propose CLIPLoRA, a cost-guided dynamic LoRA composition method that facilitates smooth transitions and realistic blending of cinematic language by dynamically fusing multiple pre-trained cinematic LoRAs within a single video. Our experiments demonstrate that CameraCLIP outperforms existing models in assessing the alignment between cinematic language and video, achieving an R@1 score of 0.81. Additionally, CLIPLoRA improves the ability for multi-shot composition, potentially bridging the gap between automatically generated videos and those shot by professional cinematographers.


Identifying High Consideration E-Commerce Search Queries

arXiv.org Artificial Intelligence

In e-commerce, high consideration search missions typically require careful and elaborate decision making, and involve a substantial research investment from customers. We consider the task of identifying High Consideration (HC) queries. Identifying such queries enables e-commerce sites to better serve user needs using targeted experiences such as curated QA widgets that help users reach purchase decisions. We explore the task by proposing an Engagement-based Query Ranking (EQR) approach, focusing on query ranking to indicate potential engagement levels with query-related shopping knowledge content during product search. Unlike previous studies on predicting trends, EQR prioritizes query-level features related to customer behavior, finance, and catalog information rather than popularity signals. We introduce an accurate and scalable method for EQR and present experimental results demonstrating its effectiveness. Offline experiments show strong ranking performance. Human evaluation shows a precision of 96% for HC queries identified by our model. The model was commercially deployed, and shown to outperform human-selected queries in terms of downstream customer impact, as measured through engagement.


Generative Explore-Exploit: Training-free Optimization of Generative Recommender Systems using LLM Optimizers

arXiv.org Artificial Intelligence

Recommender systems are widely used to suggest engaging content, and Large Language Models (LLMs) have given rise to generative recommenders. Such systems can directly generate items, including for open-set tasks like question suggestion. While the world knowledge of LLMs enable good recommendations, improving the generated content through user feedback is challenging as continuously fine-tuning LLMs is prohibitively expensive. We present a training-free approach for optimizing generative recommenders by connecting user feedback loops to LLM-based optimizers. We propose a generative explore-exploit method that can not only exploit generated items with known high engagement, but also actively explore and discover hidden population preferences to improve recommendation quality. We evaluate our approach on question generation in two domains (e-commerce and general knowledge), and model user feedback with Click Through Rate (CTR). Experiments show our LLM-based explore-exploit approach can iteratively improve recommendations, and consistently increase CTR. Ablation analysis shows that generative exploration is key to learning user preferences, avoiding the pitfalls of greedy exploit-only approaches. A human evaluation strongly supports our quantitative findings.


Enhancing Low-Resource LLMs Classification with PEFT and Synthetic Data

arXiv.org Artificial Intelligence

Large Language Models (LLMs) operating in 0-shot or few-shot settings achieve competitive results in Text Classification tasks. In-Context Learning (ICL) typically achieves better accuracy than the 0-shot setting, but it pays in terms of efficiency, due to the longer input prompt. In this paper, we propose a strategy to make LLMs as efficient as 0-shot text classifiers, while getting comparable or better accuracy than ICL. Our solution targets the low resource setting, i.e., when only 4 examples per class are available. Using a single LLM and few-shot real data we perform a sequence of generation, filtering and Parameter-Efficient Fine-Tuning steps to create a robust and efficient classifier. Experimental results show that our approach leads to competitive results on multiple text classification datasets.


A Framework for Cost-Effective and Self-Adaptive LLM Shaking and Recovery Mechanism

arXiv.org Artificial Intelligence

As Large Language Models (LLMs) gain great success in real-world applications, an increasing number of users are seeking to develop and deploy their customized LLMs through cloud services. Nonetheless, in some specific domains, there are still concerns regarding cost and trade-offs between privacy issues and accuracy. In this study, we introduce a cost-effective and self-adaptive LLM shaking tuning and recovery mechanism, named CypherTalk. With carefully designed horizontal and vertical shaking operators, we can achieve comparable accuracy results with SOTA privacy-preserving LLM schemes using Cryptography-based or Differential Privacy-based methods. Experiments also show that with the CypherTalk framework, users can achieve reliable accuracy when using optimized shaking operator settings. To our best knowledge, this is the first work that considers cost, and trade-off between model utility and privacy in LLM scenarios.


RecDCL: Dual Contrastive Learning for Recommendation

arXiv.org Artificial Intelligence

Self-supervised recommendation (SSR) has achieved great success in mining the potential interacted behaviors for collaborative filtering in recent years. As a major branch, Contrastive Learning (CL) based SSR conquers data sparsity in Web platforms by contrasting the embedding between raw data and augmented data. However, existing CL-based SSR methods mostly focus on contrasting in a batch-wise way, failing to exploit potential regularity in the feature-wise dimension, leading to redundant solutions during the representation learning process of users (items) from Websites. Furthermore, the joint benefits of utilizing both Batch-wise CL (BCL) and Feature-wise CL (FCL) for recommendations remain underexplored. To address these issues, we investigate the relationship of objectives between BCL and FCL. Our study suggests a cooperative benefit of employing both methods, as evidenced from theoretical and experimental perspectives. Based on these insights, we propose a dual CL method for recommendation, referred to as RecDCL. RecDCL first eliminates redundant solutions on user-item positive pairs in a feature-wise manner. It then optimizes the uniform distributions within users and items using a polynomial kernel from an FCL perspective. Finally, it generates contrastive embedding on output vectors in a batch-wise objective. We conduct experiments on four widely-used benchmarks and an industrial dataset. The results consistently demonstrate that the proposed RecDCL outperforms the state-of-the-art GNNs-based and SSL-based models (with up to a 5.65\% improvement in terms of Recall@20), thereby confirming the effectiveness of the joint-wise objective. All source codes used in this paper are publicly available at \url{https://github.com/THUDM/RecDCL}}.


InstructPTS: Instruction-Tuning LLMs for Product Title Summarization

arXiv.org Artificial Intelligence

E-commerce product catalogs contain billions of items. Most products have lengthy titles, as sellers pack them with product attributes to improve retrieval, and highlight key product aspects. This results in a gap between such unnatural products titles, and how customers refer to them. It also limits how e-commerce stores can use these seller-provided titles for recommendation, QA, or review summarization. Inspired by recent work on instruction-tuned LLMs, we present InstructPTS, a controllable approach for the task of Product Title Summarization (PTS). Trained using a novel instruction fine-tuning strategy, our approach is able to summarize product titles according to various criteria (e.g. number of words in a summary, inclusion of specific phrases, etc.). Extensive evaluation on a real-world e-commerce catalog shows that compared to simple fine-tuning of LLMs, our proposed approach can generate more accurate product name summaries, with an improvement of over 14 and 8 BLEU and ROUGE points, respectively.


MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition

arXiv.org Artificial Intelligence

We present MULTICONER V2, a dataset for fine-grained Named Entity Recognition covering 33 entity classes across 12 languages, in both monolingual and multilingual settings. This dataset aims to tackle the following practical challenges in NER: (i) effective handling of fine-grained classes that include complex entities like movie titles, and (ii) performance degradation due to noise generated from typing mistakes or OCR errors. The dataset is compiled from open resources like Wikipedia and Wikidata, and is publicly available. Evaluation based on the XLM-RoBERTa baseline highlights the unique challenges posed by MULTICONER V2: (i) the fine-grained taxonomy is challenging, where the scores are low with macro-F1=0.63 (across all languages), and (ii) the corruption strategy significantly impairs performance, with entity corruption resulting in 9% lower performance relative to non-entity corruptions across all languages. This highlights the greater impact of entity noise in contrast to context noise.


Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosis of Thought Prompting

arXiv.org Artificial Intelligence

Mental illness remains one of the most critical public health issues of our time, due to the severe scarcity and accessibility limit of professionals. Psychotherapy requires high-level expertise to conduct deep, complex reasoning and analysis on the cognition modeling of the patients. In the era of Large Language Models, we believe it is the right time to develop AI assistance for computational psychotherapy. We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting. DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas. The generated diagnosis rationales through the three stages are essential for assisting the professionals. Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.