Chen, Zheyi
Mobility-aware Seamless Service Migration and Resource Allocation in Multi-edge IoV Systems
Chen, Zheyi, Huang, Sijin, Min, Geyong, Ning, Zhaolong, Li, Jie, Zhang, Yan
Abstract--Mobile Edge Computing (MEC) offers low-latency and high-bandwidth support for Internet-of-Vehicles (IoV) applications. However, due to high vehicle mobility and finite communication coverage of base stations, it is hard to maintain uninterrupted and high-quality services without proper service migration among MEC servers. Existing solutions commonly rely on prior knowledge and rarely consider efficient resource allocation during the service migration process, making it hard to reach optimal performance in dynamic IoV environments. To address these important challenges, we propose SR-CL, a novel mobility-aware seamless Service migration and Resource allocation framework via Convex-optimization-enabled deep reinforcement Learning in multi-edge IoV systems. First, we decouple the Mixed Integer Nonlinear Programming (MINLP) problem of service migration and resource allocation into two sub-problems. Next, we design a new actor-critic-based asynchronous-update deep reinforcement learning method to handle service migration, where the delayed-update actor makes migration decisions and the one-step-update critic evaluates the decisions to guide the policy update. Notably, we theoretically derive the optimal resource allocation with convex optimization for each MEC server, thereby further improving system performance. Using the real-world datasets of vehicle trajectories and testbed, extensive experiments are conducted to verify the effectiveness of the proposed SR-CL. Compared to benchmark methods, the SR-CL achieves superior convergence and delay performance under various scenarios. However, the real-time demands of IoV applications pose When vehicles offload tasks, MEC servers create dedicated significant challenges for onboard processors with limited service instances via virtualization techniques for the vehicles computational capabilities [2]. Although Cloud Computing and allocate proper resources to them [7].
SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation
Zhong, Luying, Pi, Yueyang, Chen, Zheyi, Yu, Zhengxin, Miao, Wang, Chen, Xing, Min, Geyong
Federated Graph Learning (FGL) has garnered widespread attention by enabling collaborative training on multiple clients for semi-supervised classification tasks. However, most existing FGL studies do not well consider the missing inter-client topology information in real-world scenarios, causing insufficient feature aggregation of multi-hop neighbor clients during model training. Moreover, the classic FGL commonly adopts the FedAvg but neglects the high training costs when the number of clients expands, resulting in the overload of a single edge server. To address these important challenges, we propose a novel FGL framework, named SpreadFGL, to promote the information flow in edge-client collaboration and extract more generalized potential relationships between clients. In SpreadFGL, an adaptive graph imputation generator incorporated with a versatile assessor is first designed to exploit the potential links between subgraphs, without sharing raw data. Next, a new negative sampling mechanism is developed to make SpreadFGL concentrate on more refined information in downstream tasks. To facilitate load balancing at the edge layer, SpreadFGL follows a distributed training manner that enables fast model convergence. Using real-world testbed and benchmark graph datasets, extensive experiments demonstrate the effectiveness of the proposed SpreadFGL. The results show that SpreadFGL achieves higher accuracy and faster convergence against state-of-the-art algorithms.