Chen, Yuting
Synergizing Human-AI Agency: A Guide of 23 Heuristics for Service Co-Creation with LLM-Based Agents
Zheng, Qingxiao, Xu, Zhongwei, Choudhry, Abhinav, Chen, Yuting, Li, Yongming, Huang, Yun
This empirical study serves as a primer for interested service providers to determine if and how Large Language Models (LLMs) technology will be integrated for their practitioners and the broader community. We investigate the mutual learning journey of non-AI experts and AI through CoAGent, a service co-creation tool with LLM-based agents. Engaging in a three-stage participatory design processes, we work with with 23 domain experts from public libraries across the U.S., uncovering their fundamental challenges of integrating AI into human workflows. Our findings provide 23 actionable "heuristics for service co-creation with AI", highlighting the nuanced shared responsibilities between humans and AI. We further exemplar 9 foundational agency aspects for AI, emphasizing essentials like ownership, fair treatment, and freedom of expression. Our innovative approach enriches the participatory design model by incorporating AI as crucial stakeholders and utilizing AI-AI interaction to identify blind spots. Collectively, these insights pave the way for synergistic and ethical human-AI co-creation in service contexts, preparing for workforce ecosystems where AI coexists.
InfeRE: Step-by-Step Regex Generation via Chain of Inference
Zhang, Shuai, Gu, Xiaodong, Chen, Yuting, Shen, Beijun
Automatically generating regular expressions (abbrev. regexes) from natural language description (NL2RE) has been an emerging research area. Prior studies treat regex as a linear sequence of tokens and generate the final expressions autoregressively in a single pass. They did not take into account the step-by-step internal text-matching processes behind the final results. This significantly hinders the efficacy and interpretability of regex generation by neural language models. In this paper, we propose a new paradigm called InfeRE, which decomposes the generation of regexes into chains of step-by-step inference. To enhance the robustness, we introduce a self-consistency decoding mechanism that ensembles multiple outputs sampled from different models. We evaluate InfeRE on two publicly available datasets, NL-RX-Turk and KB13, and compare the results with state-of-the-art approaches and the popular tree-based generation approach TRANX. Experimental results show that InfeRE substantially outperforms previous baselines, yielding 16.3% and 14.7% improvement in DFA@5 accuracy on two datasets, respectively. Particularly, InfeRE outperforms the popular tree-based generation approach by 18.1% and 11.3% on both datasets, respectively, in terms of DFA@5 accuracy.
Group Membership Prediction
Zhang, Ziming, Chen, Yuting, Saligrama, Venkatesh
The group membership prediction (GMP) problem involves predicting whether or not a collection of instances share a certain semantic property. For instance, in kinship verification given a collection of images, the goal is to predict whether or not they share a {\it familial} relationship. In this context we propose a novel probability model and introduce latent {\em view-specific} and {\em view-shared} random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our model posits that data from each view is independent conditioned on the shared variables. This postulate leads to a parametric probability model that decomposes group membership likelihood into a tensor product of data-independent parameters and data-dependent factors. We propose learning the data-independent parameters in a discriminative way with bilinear classifiers, and test our prediction algorithm on challenging visual recognition tasks such as multi-camera person re-identification and kinship verification. On most benchmark datasets, our method can significantly outperform the current state-of-the-art.
A Rank-SVM Approach to Anomaly Detection
Qian, Jing, Root, Jonathan, Saligrama, Venkatesh, Chen, Yuting
We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on rank-SVM. Data points are first ranked based on scores derived from nearest neighbor graphs on n-point nominal data. We then train a rank-SVM using this ranked data. A test-point is declared as an anomaly at alpha-false alarm level if the predicted score is in the alpha-percentile. The resulting anomaly detector is shown to be asymptotically optimal and adaptive in that for any false alarm rate alpha, its decision region converges to the alpha-percentile level set of the unknown underlying density. In addition we illustrate through a number of synthetic and real-data experiments both the statistical performance and computational efficiency of our anomaly detector.