Chen, Yongyong
Global Graph Propagation with Hierarchical Information Transfer for Incomplete Contrastive Multi-view Clustering
Chao, Guoqing, Xu, Kaixin, Xie, Xijiong, Chen, Yongyong
Incomplete multi-view clustering has become one of the important research problems due to the extensive missing multi-view data in the real world. Although the existing methods have made great progress, there are still some problems: 1) most methods cannot effectively mine the information hidden in the missing data; 2) most methods typically divide representation learning and clustering into two separate stages, but this may affect the clustering performance as the clustering results directly depend on the learned representation. To address these problems, we propose a novel incomplete multi-view clustering method with hierarchical information transfer. Firstly, we design the view-specific Graph Convolutional Networks (GCN) to obtain the representation encoding the graph structure, which is then fused into the consensus representation. Secondly, considering that one layer of GCN transfers one-order neighbor node information, the global graph propagation with the consensus representation is proposed to handle the missing data and learn deep representation. Finally, we design a weight-sharing pseudo-classifier with contrastive learning to obtain an end-to-end framework that combines view-specific representation learning, global graph propagation with hierarchical information transfer, and contrastive clustering for joint optimization. Extensive experiments conducted on several commonly-used datasets demonstrate the effectiveness and superiority of our method in comparison with other state-of-the-art approaches. The code is available at https://github.com/KelvinXuu/GHICMC.
OTLRM: Orthogonal Learning-based Low-Rank Metric for Multi-Dimensional Inverse Problems
Wang, Xiangming, Zeng, Haijin, Chen, Jiaoyang, Liu, Sheng, Chen, Yongyong, Chao, Guoqing
This property is vital for multi-dimensional inverse problems, such as tensor completion, spectral imaging reconstruction, and multispectral image denoising. Existing tensor singular value decomposition (t-SVD) definitions rely on hand-designed or pre-given transforms, which lack flexibility for defining tensor nuclear norm (TNN). The TNN-regularized optimization problem is solved by the singular value thresholding (SVT) operator, which leverages the t-SVD framework to obtain the low-rank tensor. However, it is quite complicated to introduce SVT into deep neural networks due to the numerical instability problem in solving the derivatives of the eigenvectors. In this paper, we introduce a novel data-driven generative low-rank t-SVD model based on the learnable orthogonal transform, which can be naturally solved under its representation. Prompted by the linear algebra theorem of the Householder transformation, our learnable orthogonal transform is achieved by constructing an endogenously orthogonal matrix adaptable to neural networks, optimizing it as arbitrary orthogonal matrices. Additionally, we propose a low-rank solver as a generalization of SVT, which utilizes an efficient representation of generative networks to obtain low-rank structures. Extensive experiments highlight its significant restoration enhancements.
Random Sampling for Diffusion-based Adversarial Purification
Zhang, Jiancheng, Dong, Peiran, Chen, Yongyong, Zhao, Yin-Ping, Guo, Song
Denoising Diffusion Probabilistic Models (DDPMs) have gained great attention in adversarial purification. Current diffusion-based works focus on designing effective condition-guided mechanisms while ignoring a fundamental problem, i.e., the original DDPM sampling is intended for stable generation, which may not be the optimal solution for adversarial purification. Inspired by the stability of the Denoising Diffusion Implicit Model (DDIM), we propose an opposite sampling scheme called random sampling. In brief, random sampling will sample from a random noisy space during each diffusion process, while DDPM and DDIM sampling will continuously sample from the adjacent or original noisy space. Thus, random sampling obtains more randomness and achieves stronger robustness against adversarial attacks. Correspondingly, we also introduce a novel mediator conditional guidance to guarantee the consistency of the prediction under the purified image and clean image input. To expand awareness of guided diffusion purification, we conduct a detailed evaluation with different sampling methods and our random sampling achieves an impressive improvement in multiple settings. Leveraging mediator-guided random sampling, we also establish a baseline method named DiffAP, which significantly outperforms state-of-the-art (SOTA) approaches in performance and defensive stability. Remarkably, under strong attack, our DiffAP even achieves a more than 20% robustness advantage with 10$\times$ sampling acceleration.
Hyperspectral Image Denoising Using Non-convex Local Low-rank and Sparse Separation with Spatial-Spectral Total Variation Regularization
Peng, Chong, Liu, Yang, Chen, Yongyong, Wu, Xinxin, Cheng, Andrew, Kang, Zhao, Chen, Chenglizhao, Cheng, Qiang
In this paper, we propose a novel nonconvex approach to robust principal component analysis for HSI denoising, which focuses on simultaneously developing more accurate approximations to both rank and column-wise sparsity for the low-rank and sparse components, respectively. In particular, the new method adopts the log-determinant rank approximation and a novel $\ell_{2,\log}$ norm, to restrict the local low-rank or column-wisely sparse properties for the component matrices, respectively. For the $\ell_{2,\log}$-regularized shrinkage problem, we develop an efficient, closed-form solution, which is named $\ell_{2,\log}$-shrinkage operator. The new regularization and the corresponding operator can be generally used in other problems that require column-wise sparsity. Moreover, we impose the spatial-spectral total variation regularization in the log-based nonconvex RPCA model, which enhances the global piece-wise smoothness and spectral consistency from the spatial and spectral views in the recovered HSI. Extensive experiments on both simulated and real HSIs demonstrate the effectiveness of the proposed method in denoising HSIs.