Chen, Yixuan
KunlunBaize: LLM with Multi-Scale Convolution and Multi-Token Prediction Under TransformerX Framework
Li, Cheng, Liu, Jiexiong, Chen, Yixuan, Jia, Yanqin, Li, Zhepeng
Large language models have demonstrated remarkable performance across various tasks, yet they face challenges such as low computational efficiency, gradient vanishing, and difficulties in capturing complex feature interactions. To address these limitations, a novel framework has been proposed. This framework incorporates a learnable dense residual skip connection mechanism, a TransformerX module a transformer based component integrating multiscale convolution and adaptive activation functions and a multitoken prediction interaction module. The learnable dense residual connections enhance information flow and feature capture across layers. Within the TransformerX module, large convolutional kernels aggregate semantic information from extensive text segments, while smaller convolutions focus on local word order and syntactic structures. The adaptive activation function dynamically adjusts its parameters based on the semantic features of the input text, improving the model's ability to handle diverse semantic expressions and complex relationships. The multitoken prediction module boosts data utilization and accelerates inference by predicting multiple future tokens. These components significantly enhance the performance and efficiency of large language models.
Video-VoT-R1: An efficient video inference model integrating image packing and AoE architecture
Li, Cheng, Liu, Jiexiong, Chen, Yixuan, Jia, Yanqin
In the field of video-language pretraining, existing models face numerous challenges in terms of inference efficiency and multimodal data processing. This paper proposes a KunLunBaize-VoT-R1 video inference model based on a long-sequence image encoder, along with its training and application methods. By integrating image packing technology, the Autonomy-of-Experts (AoE) architecture, and combining the video of Thought (VoT), a large language model (LLM) trained with large-scale reinforcement learning, and multiple training techniques, the efficiency and accuracy of the model in video inference tasks are effectively improved. Experiments show that this model performs outstandingly in multiple tests, providing a new solution for video-language understanding.
Train Faster, Perform Better: Modular Adaptive Training in Over-Parameterized Models
Shi, Yubin, Chen, Yixuan, Dong, Mingzhi, Yang, Xiaochen, Li, Dongsheng, Wang, Yujiang, Dick, Robert P., Lv, Qin, Zhao, Yingying, Yang, Fan, Lu, Tun, Gu, Ning, Shang, Li
Despite their prevalence in deep-learning communities, over-parameterized models convey high demands of computational costs for proper training. This work studies the fine-grained, modular-level learning dynamics of over-parameterized models to attain a more efficient and fruitful training strategy. Empirical evidence reveals that when scaling down into network modules, such as heads in self-attention models, we can observe varying learning patterns implicitly associated with each module's trainability. To describe such modular-level learning capabilities, we introduce a novel concept dubbed modular neural tangent kernel (mNTK), and we demonstrate that the quality of a module's learning is tightly associated with its mNTK's principal eigenvalue $\lambda_{\max}$. A large $\lambda_{\max}$ indicates that the module learns features with better convergence, while those miniature ones may impact generalization negatively. Inspired by the discovery, we propose a novel training strategy termed Modular Adaptive Training (MAT) to update those modules with their $\lambda_{\max}$ exceeding a dynamic threshold selectively, concentrating the model on learning common features and ignoring those inconsistent ones. Unlike most existing training schemes with a complete BP cycle across all network modules, MAT can significantly save computations by its partially-updating strategy and can further improve performance. Experiments show that MAT nearly halves the computational cost of model training and outperforms the accuracy of baselines.
ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation
Du, Xueying, Liu, Mingwei, Wang, Kaixin, Wang, Hanlin, Liu, Junwei, Chen, Yixuan, Feng, Jiayi, Sha, Chaofeng, Peng, Xin, Lou, Yiling
In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval.