Goto

Collaborating Authors

 Chen, Yining


SEM-CLIP: Precise Few-Shot Learning for Nanoscale Defect Detection in Scanning Electron Microscope Image

arXiv.org Artificial Intelligence

In the field of integrated circuit manufacturing, the detection and classification of nanoscale wafer defects are critical for subsequent root cause analysis and yield enhancement. The complex background patterns observed in scanning electron microscope (SEM) images and the diverse textures of the defects pose significant challenges. Traditional methods usually suffer from insufficient data, labels, and poor transferability. In this paper, we propose a novel few-shot learning approach, SEM-CLIP, for accurate defect classification and segmentation. SEM-CLIP customizes the Contrastive Language-Image Pretraining (CLIP) model to better focus on defect areas and minimize background distractions, thereby enhancing segmentation accuracy. We employ text prompts enriched with domain knowledge as prior information to assist in precise analysis. Additionally, our approach incorporates feature engineering with textual guidance to categorize defects more effectively. SEM-CLIP requires little annotated data, substantially reducing labor demands in the semiconductor industry. Extensive experimental validation demonstrates that our model achieves impressive classification and segmentation results under few-shot learning scenarios.


OpenAI o1 System Card

arXiv.org Artificial Intelligence

The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.


Prover-Verifier Games improve legibility of LLM outputs

arXiv.org Artificial Intelligence

One way to increase confidence in the outputs of Large Language Models (LLMs) is to support them with reasoning that is clear and easy to check -- a property we call legibility. We study legibility in the context of solving grade-school math problems and show that optimizing chain-of-thought solutions only for answer correctness can make them less legible. To mitigate the loss in legibility, we propose a training algorithm inspired by Prover-Verifier Game from Anil et al. (2021). Our algorithm iteratively trains small verifiers to predict solution correctness, "helpful" provers to produce correct solutions that the verifier accepts, and "sneaky" provers to produce incorrect solutions that fool the verifier. We find that the helpful prover's accuracy and the verifier's robustness to adversarial attacks increase over the course of training. Furthermore, we show that legibility training transfers to time-constrained humans tasked with verifying solution correctness. Over course of LLM training human accuracy increases when checking the helpful prover's solutions, and decreases when checking the sneaky prover's solutions. Hence, training for checkability by small verifiers is a plausible technique for increasing output legibility. Our results suggest legibility training against small verifiers as a practical avenue for increasing legibility of large LLMs to humans, and thus could help with alignment of superhuman models.


Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision

arXiv.org Artificial Intelligence

Widely used alignment techniques, such as reinforcement learning from human feedback (RLHF), rely on the ability of humans to supervise model behavior - for example, to evaluate whether a model faithfully followed instructions or generated safe outputs. However, future superhuman models will behave in complex ways too difficult for humans to reliably evaluate; humans will only be able to weakly supervise superhuman models. We study an analogy to this problem: can weak model supervision elicit the full capabilities of a much stronger model? We test this using a range of pretrained language models in the GPT-4 family on natural language processing (NLP), chess, and reward modeling tasks. We find that when we naively finetune strong pretrained models on labels generated by a weak model, they consistently perform better than their weak supervisors, a phenomenon we call weak-to-strong generalization. However, we are still far from recovering the full capabilities of strong models with naive finetuning alone, suggesting that techniques like RLHF may scale poorly to superhuman models without further work. We find that simple methods can often significantly improve weak-to-strong generalization: for example, when finetuning GPT-4 with a GPT-2-level supervisor and an auxiliary confidence loss, we can recover close to GPT-3.5-level performance on NLP tasks. Our results suggest that it is feasible to make empirical progress today on a fundamental challenge of aligning superhuman models.


Zero-shot causal learning

arXiv.org Artificial Intelligence

Predicting how different interventions will causally affect a specific individual is important in a variety of domains such as personalized medicine, public policy, and online marketing. There are a large number of methods to predict the effect of an existing intervention based on historical data from individuals who received it. However, in many settings it is important to predict the effects of novel interventions (\emph{e.g.}, a newly invented drug), which these methods do not address. Here, we consider zero-shot causal learning: predicting the personalized effects of a novel intervention. We propose CaML, a causal meta-learning framework which formulates the personalized prediction of each intervention's effect as a task. CaML trains a single meta-model across thousands of tasks, each constructed by sampling an intervention, along with its recipients and nonrecipients. By leveraging both intervention information (\emph{e.g.}, a drug's attributes) and individual features~(\emph{e.g.}, a patient's history), CaML is able to predict the personalized effects of novel interventions that do not exist at the time of training. Experimental results on real world datasets in large-scale medical claims and cell-line perturbations demonstrate the effectiveness of our approach. Most strikingly, CaML's zero-shot predictions outperform even strong baselines trained directly on data from the test interventions.


Learning Neural Templates for Recommender Dialogue System

arXiv.org Artificial Intelligence

Though recent end-to-end neural models have shown promising progress on Conversational Recommender System (CRS), two key challenges still remain. First, the recommended items cannot be always incorporated into the generated replies precisely and appropriately. Second, only the items mentioned in the training corpus have a chance to be recommended in the conversation. To tackle these challenges, we introduce a novel framework called NTRD for recommender dialogue system that decouples the dialogue generation from the item recommendation. NTRD has two key components, i.e., response template generator and item selector. The former adopts an encoder-decoder model to generate a response template with slot locations tied to target items, while the latter fills in slot locations with the proper items using a sufficient attention mechanism. Our approach combines the strengths of both classical slot filling approaches (that are generally controllable) and modern neural NLG approaches (that are generally more natural and accurate). Extensive experiments on the benchmark ReDial show our NTRD significantly outperforms the previous state-of-the-art methods. Besides, our approach has the unique advantage to produce novel items that do not appear in the training set of dialogue corpus. The code is available at \url{https://github.com/jokieleung/NTRD}.


Statistically Meaningful Approximation: a Case Study on Approximating Turing Machines with Transformers

arXiv.org Machine Learning

A common lens to theoretically study neural net architectures is to analyze the functions they can approximate. However, the constructions from approximation theory often have unrealistic aspects, for example, reliance on infinite precision to memorize target function values, which make these results potentially less meaningful. To address these issues, this work proposes a formal definition of statistically meaningful approximation which requires the approximating network to exhibit good statistical learnability. We present case studies on statistically meaningful approximation for two classes of functions: boolean circuits and Turing machines. We show that overparameterized feedforward neural nets can statistically meaningfully approximate boolean circuits with sample complexity depending only polynomially on the circuit size, not the size of the approximating network. In addition, we show that transformers can statistically meaningfully approximate Turing machines with computation time bounded by $T$, requiring sample complexity polynomial in the alphabet size, state space size, and $\log (T)$. Our analysis introduces new tools for generalization bounds that provide much tighter sample complexity guarantees than the typical VC-dimension or norm-based bounds, which may be of independent interest.


Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments

arXiv.org Machine Learning

Domain generalization aims at performing well on unseen environments using labeled data from a limited number of training environments [Blanchard et al., 2011]. In contrast to transfer learning or domain adaptation, domain generalization assumes that neither labeled or unlabeled data from the test environments is available at training time. For example, a medical diagnostic system may have access to training datasets from only a few hospitals, but will be deployed on test cases from many other hospitals [Choudhary et al., 2020]; a traffic scene semantic segmentation system may be trained on data from some specific weather conditions, but will need to perform well under other conditions [Yue et al., 2019]. There are many algorithms for domain generalization, including Invariant Risk Minimization (IRM) [Arjovsky et al., 2019] and several variants. IRM is inspired by the principle of invariance of causal mechanisms [Pearl, 2009], which, under sufficiently strong assumptions, allows for provable identifiability of the features that achieve minimax domain generalization [Peters et al., 2016, Heinze-Deml et al., 2018]. However, empirical results for these algorithms are mixed; Gulrajani and Lopez-Paz [2021], Aubin et al. [2021] present experimental evidence that these methods do not consistently outperform ERM for either realistic or simple linear data models.


Maria: A Visual Experience Powered Conversational Agent

arXiv.org Artificial Intelligence

Arguably, the visual perception of conversational agents to the physical world is a key way for them to exhibit the human-like intelligence. Image-grounded conversation is thus proposed to address this challenge. Existing works focus on exploring the multimodal dialog models that ground the conversation on a given image. In this paper, we take a step further to study image-grounded conversation under a fully open-ended setting where no paired dialog and image are assumed available. Specifically, we present Maria, a neural conversation agent powered by the visual world experiences which are retrieved from a large-scale image index. Maria consists of three flexible components, i.e., text-to-image retriever, visual concept detector and visual-knowledge-grounded response generator. The retriever aims to retrieve a correlated image to the dialog from an image index, while the visual concept detector extracts rich visual knowledge from the image. Then, the response generator is grounded on the extracted visual knowledge and dialog context to generate the target response. Extensive experiments demonstrate Maria outperforms previous state-of-the-art methods on automatic metrics and human evaluation, and can generate informative responses that have some visual commonsense of the physical world.


Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data

arXiv.org Machine Learning

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning. At the core of our analysis is a simple but realistic "expansion" assumption, which states that a low-probability subset of the data must expand to a neighborhood with large probability relative to the subset. We also assume that neighborhoods of examples in different classes have minimal overlap. We prove that under these assumptions, the minimizers of population objectives based on self-training and input-consistency regularization will achieve high accuracy with respect to ground-truth labels. By using off-the-shelf generalization bounds, we immediately convert this result to sample complexity guarantees for neural nets that are polynomial in the margin and Lipschitzness. Our results help explain the empirical successes of recently proposed self-training algorithms which use input consistency regularization.