Chen, Yikai
T3: Multi-modal Tailless Triple-Flapping-Wing Robot for Efficient Aerial and Terrestrial Locomotion
Xu, Xiangyu, Zheng, Zhi, Wang, Jin, Chen, Yikai, Huang, Jingyang, Wu, Ruixin, Yu, Huan, Lu, Guodong
-- Flapping-wing robots offer great versatility; however, achieving efficient multi-modal locomotion remains challenging. This paper presents the design, modeling, and experimentation of T3, a novel tailless flapping-wing robot with three pairs of independently actuated wings. Inspired by juvenile water striders, T3 incorporates bio-inspired elastic passive legs that effectively transmit vibrations generated during wing flapping, enabling ground movement without additional motors. An SE(3)-based controller ensures precise trajectory tracking and seamless mode transition. T o validate T3's effectiveness, we developed a fully functional prototype and conducted targeted modeling, real-world experiments, and benchmark comparisons. The results demonstrate the robot's and controller's outstanding performance, underscoring the potential of multi-modal flapping-wing technologies for future aerial-ground robotic applications.
APT-MMF: An advanced persistent threat actor attribution method based on multimodal and multilevel feature fusion
Xiao, Nan, Lang, Bo, Wang, Ting, Chen, Yikai
Threat actor attribution is a crucial defense strategy for combating advanced persistent threats (APTs). Cyber threat intelligence (CTI), which involves analyzing multisource heterogeneous data from APTs, plays an important role in APT actor attribution. The current attribution methods extract features from different CTI perspectives and employ machine learning models to classify CTI reports according to their threat actors. However, these methods usually extract only one kind of feature and ignore heterogeneous information, especially the attributes and relations of indicators of compromise (IOCs), which form the core of CTI. To address these problems, we propose an APT actor attribution method based on multimodal and multilevel feature fusion (APT-MMF). First, we leverage a heterogeneous attributed graph to characterize APT reports and their IOC information. Then, we extract and fuse multimodal features, including attribute type features, natural language text features and topological relationship features, to construct comprehensive node representations. Furthermore, we design multilevel heterogeneous graph attention networks to learn the deep hidden features of APT report nodes; these networks integrate IOC type-level, metapath-based neighbor node-level, and metapath semantic-level attention. Utilizing multisource threat intelligence, we construct a heterogeneous attributed graph dataset for verification purposes. The experimental results show that our method not only outperforms the existing methods but also demonstrates its good interpretability for attribution analysis tasks.