Goto

Collaborating Authors

 Chen, Yihong


Multilingual Language Model Pretraining using Machine-translated Data

arXiv.org Artificial Intelligence

High-resource languages such as English, enables the pretraining of high-quality large language models (LLMs). The same can not be said for most other languages as LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated texts from a single high-quality source language can contribute significantly to the pretraining quality of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into nine languages, resulting in a 1.7-trillion-token dataset, which we call TransWebEdu and pretrain a 1.3B-parameter model, TransWebLLM, from scratch on this dataset. Across nine non-English reasoning tasks, we show that TransWebLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2, Qwen2.5, and Gemma, despite using an order of magnitude less data. We demonstrate that adding less than 5% of TransWebEdu as domain-specific pretraining data sets a new state-of-the-art in Arabic, Italian, Indonesian, Swahili, and Welsh understanding and commonsense reasoning tasks. To promote reproducibility, we release our corpus, models, and training pipeline under Open Source Initiative-approved licenses.


LUNAR: LLM Unlearning via Neural Activation Redirection

arXiv.org Artificial Intelligence

Large Language Models (LLMs) benefit from training on ever larger amounts of textual data, but as a result, they increasingly incur the risk of leaking private information. The ability to selectively remove knowledge from LLMs is, therefore, a highly desirable capability. In this paper, we propose LUNAR, a novel unlearning methodology grounded in the Linear Representation Hypothesis. LUNAR operates by redirecting the representations of unlearned data to regions that trigger the model's inherent ability to express its inability to answer. LUNAR achieves state-of-the-art unlearning performance while significantly enhancing the controllability of the unlearned model during inference. Specifically, LUNAR achieves between 2.9x to 11.7x improvements on combined "unlearning efficacy" and "model utility" score ("Deviation Score") on the PISTOL dataset across various base models. We also demonstrate, through quantitative analysis and qualitative examples, LUNAR's superior controllability in generating coherent and contextually aware responses, mitigating undesired side effects of existing methods. Moreover, we demonstrate that LUNAR is robust against white-box adversarial attacks and versatile in handling real-world scenarios, such as processing sequential unlearning requests.


Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language

arXiv.org Artificial Intelligence

English, as a very high-resource language, enables the pretraining of high-quality large language models (LLMs). The same cannot be said for most other languages, as leading LLMs still underperform for non-English languages, likely due to a gap in the quality and diversity of the available multilingual pretraining corpora. In this work, we find that machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual LLMs. We translate FineWeb-Edu, a high-quality English web dataset, into French, German, and Spanish, resulting in a final 300B-token dataset, which we call TransWeb-Edu, and pretrain a 1.3B-parameter model, CuatroLLM, from scratch on this dataset. Across five non-English reasoning tasks, we show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data, such as Llama3.2 and Gemma2, despite using an order of magnitude less data, such as about 6% of the tokens used for Llama3.2's training. We further demonstrate that with additional domain-specific pretraining, amounting to less than 1% of TransWeb-Edu, CuatroLLM surpasses the state of the art in multilingual reasoning. To promote reproducibility, we release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM.


Jet Expansions of Residual Computation

arXiv.org Artificial Intelligence

We introduce a framework for expanding residual computational graphs using jets, operators that generalize truncated Taylor series. Our method provides a systematic approach to disentangle contributions of different computational paths to model predictions. In contrast to existing techniques such as distillation, probing, or early decoding, our expansions rely solely on the model itself and requires no data, training, or sampling from the model. We demonstrate how our framework grounds and subsumes logit lens, reveals a (super-)exponential path structure in the recursive residual depth and opens up several applications. These include sketching a transformer large language model with n-gram statistics extracted from its computations, and indexing the models' levels of toxicity knowledge. Our approach enables data-free analysis of residual computation for model interpretability, development, and evaluation. The project website can be found here. Machine learning models, particularly large-scale foundation models, have become increasingly prevalent and impactful across a wide range of domains (Wei et al., 2021; Bommasani et al., 2023; Touvron et al., 2023b). While delivering strong results, their black-box nature has led to the development of techniques to assess their behavior and gain insights into their internal mechanisms. In this space, mechanistic interpretability (MI) (see e.g. Bereska & Gavves, 2024; Ferrando et al., 2024, for recent surverys) has emerged as an alternative to more classic local attribution methods such as SHAP (Lundberg, 2017) or integrated gradient (Sundararajan et al., 2017).


TPTU-v2: Boosting Task Planning and Tool Usage of Large Language Model-based Agents in Real-world Systems

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated proficiency in addressing tasks that necessitate a combination of task planning and the usage of external tools that require a blend of task planning and the utilization of external tools, such as APIs. However, real-world complex systems present three prevalent challenges concerning task planning and tool usage: (1) The real system usually has a vast array of APIs, so it is impossible to feed the descriptions of all APIs to the prompt of LLMs as the token length is limited; (2) the real system is designed for handling complex tasks, and the base LLMs can hardly plan a correct sub-task order and API-calling order for such tasks; (3) Similar semantics and functionalities among APIs in real systems create challenges for both LLMs and even humans in distinguishing between them. In response, this paper introduces a comprehensive framework aimed at enhancing the Task Planning and Tool Usage (TPTU) abilities of LLM-based agents operating within real-world systems. Our framework comprises three key components designed to address these challenges: (1) the API Retriever selects the most pertinent APIs for the user task among the extensive array available; (2) LLM Finetuner tunes a base LLM so that the finetuned LLM can be more capable for task planning and API calling; (3) the Demo Selector adaptively retrieves different demonstrations related to hard-to-distinguish APIs, which is further used for in-context learning to boost the final performance. We validate our methods using a real-world commercial system as well as an open-sourced academic dataset, and the outcomes clearly showcase the efficacy of each individual component as well as the integrated framework.


TPTU: Large Language Model-based AI Agents for Task Planning and Tool Usage

arXiv.org Artificial Intelligence

With recent advancements in natural language processing, Large Language Models (LLMs) have emerged as powerful tools for various real-world applications. Despite their powers, the intrinsic generative abilities of LLMs may prove insufficient for handling complex tasks, which necessitate a combination of task planning and the usage of external tools. In this paper, we first propose a structured framework tailored for LLM-based AI Agents and then discuss the crucial capabilities necessary for tackling intricate problems. Within this framework, we design two distinct types of agents (i.e., one-step agent and sequential agent) to execute the inference process. Subsequently, we instantiate the framework using various LLMs and evaluate their Task Planning and Tool Usage (TPTU) abilities on typical tasks. By highlighting key findings and challenges, our goal is to provide a helpful resource for researchers and practitioners to leverage the power of LLMs in their AI applications. Our study emphasizes the substantial potential of these models while also identifying areas that need more investigation and improvement. The code and resources will be available on GitHub.


Improving Language Plasticity via Pretraining with Active Forgetting

arXiv.org Artificial Intelligence

Pretrained language models (PLMs) are today the primary model for natural language processing. Despite their impressive downstream performance, it can be difficult to apply PLMs to new languages, a barrier to making their capabilities universally accessible. While prior work has shown it possible to address this issue by learning a new embedding layer for the new language, doing so is both data and compute inefficient. We propose to use an active forgetting mechanism during pretraining, as a simple way of creating PLMs that can quickly adapt to new languages. Concretely, by resetting the embedding layer every K updates during pretraining, we encourage the PLM to improve its ability of learning new embeddings within a limited number of updates, similar to a meta-learning effect. Experiments with RoBERTa show that models pretrained with our forgetting mechanism not only demonstrate faster convergence during language adaptation but also outperform standard ones in a low-data regime, particularly for languages that are distant from English.


Mini-Model Adaptation: Efficiently Extending Pretrained Models to New Languages via Aligned Shallow Training

arXiv.org Artificial Intelligence

Prior work shows that it is possible to expand pretrained Masked Language Models (MLMs) to new languages by learning a new set of embeddings, while keeping the transformer body frozen. Despite learning a small subset of parameters, this approach is not compute-efficient, as training the new embeddings requires a full forward and backward pass over the entire model. We propose mini-model adaptation, a compute-efficient alternative that builds a shallow mini-model from a fraction of a large model's parameters. New language-specific embeddings can then be efficiently trained over the mini-model and plugged into the aligned large model for rapid cross-lingual transfer. We explore two approaches to learn mini-models: MiniJoint, which jointly pretrains the primary model and the mini-model using a single transformer with a secondary MLM head at a middle layer; and MiniPost, where we start from a regular pretrained model, build a mini-model by extracting and freezing a few layers, and learn a small number of parameters on top. Experiments on XNLI, MLQA and PAWS-X show that mini-model adaptation matches the performance of the standard approach using 2.3x less compute on average.


Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations

arXiv.org Artificial Intelligence

Learning good representations on multi-relational graphs is essential to knowledge base completion (KBC). In this paper, we propose a new self-supervised training objective for multi-relational graph representation learning, via simply incorporating relation prediction into the commonly used 1vsAll objective. The new training objective contains not only terms for predicting the subject and object of a given triple, but also a term for predicting the relation type. We analyse how this new objective impacts multi-relational learning in KBC: experiments on a variety of datasets and models show that relation prediction can significantly improve entity ranking, the most widely used evaluation task for KBC, yielding a 6.1% increase in MRR and 9.9% increase in Hits@1 on FB15k-237 as well as a 3.1% increase in MRR and 3.4% in Hits@1 on Aristo-v4. Moreover, we observe that the proposed objective is especially effective on highly multi-relational datasets, i.e. datasets with a large number of predicates, and generates better representations when larger embedding sizes are used.


You Impress Me: Dialogue Generation via Mutual Persona Perception

arXiv.org Artificial Intelligence

Despite the continuing efforts to improve the engagingness and consistency of chit-chat dialogue systems, the majority of current work simply focus on mimicking human-like responses, leaving understudied the aspects of modeling understanding between interlocutors. The research in cognitive science, instead, suggests that understanding is an essential signal for a high-quality chit-chat conversation. Motivated by this, we propose P^2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding. Specifically, P^2 Bot incorporates mutual persona perception to enhance the quality of personalized dialogue generation. Experiments on a large public dataset, Persona-Chat, demonstrate the effectiveness of our approach, with a considerable boost over the state-of-the-art baselines across both automatic metrics and human evaluations.