Chen, Yanlin
Learning to Hop for a Single-Legged Robot with Parallel Mechanism
Zhang, Hongbo, Chu, Xiangyu, Chen, Yanlin, Tang, Yunxi, Yue, Linzhu, Liu, Yun-Hui, Au, Kwok Wai Samuel
This work presents the application of reinforcement learning to improve the performance of a highly dynamic hopping system with a parallel mechanism. Unlike serial mechanisms, parallel mechanisms can not be accurately simulated due to the complexity of their kinematic constraints and closed-loop structures. Besides, learning to hop suffers from prolonged aerial phase and the sparse nature of the rewards. To address them, we propose a learning framework to encode long-history feedback to account for the under-actuation brought by the prolonged aerial phase. In the proposed framework, we also introduce a simplified serial configuration for the parallel design to avoid directly simulating parallel structure during the training. A torque-level conversion is designed to deal with the parallel-serial conversion to handle the sim-to-real issue. Simulation and hardware experiments have been conducted to validate this framework.
Optimizing Transformer based on high-performance optimizer for predicting employment sentiment in American social media content
Wang, Feiyang, Bao, Qiaozhi, Wang, Zixuan, Chen, Yanlin
This article improves the Transformer model based on swarm intelligence optimization algorithm, aiming to predict the emotions of employment related text content on American social media. Through text preprocessing, feature extraction, and vectorization, the text data was successfully converted into numerical data and imported into the model for training. The experimental results show that during the training process, the accuracy of the model gradually increased from 49.27% to 82.83%, while the loss value decreased from 0.67 to 0.35, indicating a significant improvement in the performance of the model on the training set. According to the confusion matrix analysis of the training set, the accuracy of the training set is 86.15%. The confusion matrix of the test set also showed good performance, with an accuracy of 82.91%. The accuracy difference between the training set and the test set is only 3.24%, indicating that the model has strong generalization ability. In addition, the evaluation of polygon results shows that the model performs well in classification accuracy, sensitivity, specificity, and area under the curve (AUC), with a Kappa coefficient of 0.66 and an F-measure of 0.80, further verifying the effectiveness of the model in social media sentiment analysis. The improved model proposed in this article not only improves the accuracy of sentiment recognition in employment related texts on social media, but also has important practical significance. This social media based data analysis method can not only capture social dynamics in a timely manner, but also promote decision-makers to pay attention to public concerns and provide data support for improving employment conditions.
Cross-hospital Sepsis Early Detection via Semi-supervised Optimal Transport with Self-paced Ensemble
Ding, Ruiqing, Zhou, Yu, Xu, Jie, Xie, Yan, Liang, Qiqiang, Ren, He, Wang, Yixuan, Chen, Yanlin, Wang, Leye, Huang, Man
Leveraging machine learning techniques for Sepsis early detection and diagnosis has attracted increasing interest in recent years. However, most existing methods require a large amount of labeled training data, which may not be available for a target hospital that deploys a new Sepsis detection system. More seriously, as treated patients are diversified between hospitals, directly applying a model trained on other hospitals may not achieve good performance for the target hospital. To address this issue, we propose a novel semi-supervised transfer learning framework based on optimal transport theory and self-paced ensemble for Sepsis early detection, called SPSSOT, which can efficiently transfer knowledge from the source hospital (with rich labeled data) to the target hospital (with scarce labeled data). Specifically, SPSSOT incorporates a new optimal transport-based semi-supervised domain adaptation component that can effectively exploit all the unlabeled data in the target hospital. Moreover, self-paced ensemble is adapted in SPSSOT to alleviate the class imbalance issue during transfer learning. In a nutshell, SPSSOT is an end-to-end transfer learning method that automatically selects suitable samples from two domains (hospitals) respectively and aligns their feature spaces. Extensive experiments on two open clinical datasets, MIMIC-III and Challenge, demonstrate that SPSSOT outperforms state-of-the-art transfer learning methods by improving 1-3% of AUC.
Quantum Algorithms and Lower Bounds for Linear Regression with Norm Constraints
Chen, Yanlin, de Wolf, Ronald
Lasso and Ridge are important minimization problems in machine learning and statistics. They are versions of linear regression with squared loss where the vector $\theta\in\mathbb{R}^d$ of coefficients is constrained in either $\ell_1$-norm (for Lasso) or in $\ell_2$-norm (for Ridge). We study the complexity of quantum algorithms for finding $\varepsilon$-minimizers for these minimization problems. We show that for Lasso we can get a quadratic quantum speedup in terms of $d$ by speeding up the cost-per-iteration of the Frank-Wolfe algorithm, while for Ridge the best quantum algorithms are linear in $d$, as are the best classical algorithms. As a byproduct of our quantum lower bound for Lasso, we also prove the first classical lower bound for Lasso that is tight up to polylog-factors.
To Explain or Not to Explain: A Study on the Necessity of Explanations for Autonomous Vehicles
Shen, Yuan, Jiang, Shanduojiao, Chen, Yanlin, Yang, Eileen, Jin, Xilun, Fan, Yuliang, Campbell, Katie Driggs
Explainable AI, in the context of autonomous systems, like self driving cars, has drawn broad interests from researchers. Recent studies have found that providing explanations for an autonomous vehicle actions has many benefits, e.g., increase trust and acceptance, but put little emphasis on when an explanation is needed and how the content of explanation changes with context. In this work, we investigate which scenarios people need explanations and how the critical degree of explanation shifts with situations and driver types. Through a user experiment, we ask participants to evaluate how necessary an explanation is and measure the impact on their trust in the self driving cars in different contexts. We also present a self driving explanation dataset with first person explanations and associated measure of the necessity for 1103 video clips, augmenting the Berkeley Deep Drive Attention dataset. Additionally, we propose a learning based model that predicts how necessary an explanation for a given situation in real time, using camera data inputs. Our research reveals that driver types and context dictates whether or not an explanation is necessary and what is helpful for improved interaction and understanding.