Chen, Yangkun
Novelty-Guided Data Reuse for Efficient and Diversified Multi-Agent Reinforcement Learning
Chen, Yangkun, Yang, Kai, Tao, Jian, Lyu, Jiafei
Recently, deep Multi-Agent Reinforcement Learning (MARL) has demonstrated its potential to tackle complex cooperative tasks, pushing the boundaries of AI in collaborative environments. However, the efficiency of these systems is often compromised by inadequate sample utilization and a lack of diversity in learning strategies. To enhance MARL performance, we introduce a novel sample reuse approach that dynamically adjusts policy updates based on observation novelty. Specifically, we employ a Random Network Distillation (RND) network to gauge the novelty of each agent's current state, assigning additional sample update opportunities based on the uniqueness of the data. We name our method Multi-Agent Novelty-GuidEd sample Reuse (MANGER). This method increases sample efficiency and promotes exploration and diverse agent behaviors. Our evaluations confirm substantial improvements in MARL effectiveness in complex cooperative scenarios such as Google Research Football and super-hard StarCraft II micromanagement tasks.
Benchmarking Robustness and Generalization in Multi-Agent Systems: A Case Study on Neural MMO
Chen, Yangkun, Suarez, Joseph, Zhang, Junjie, Yu, Chenghui, Wu, Bo, Chen, Hanmo, Zhu, Hengman, Du, Rui, Qian, Shanliang, Liu, Shuai, Hong, Weijun, He, Jinke, Zhang, Yibing, Zhao, Liang, Zhu, Clare, Togelius, Julian, Mohanty, Sharada, Chen, Jiaxin, Li, Xiu, Zhu, Xiaolong, Isola, Phillip
We present the results of the second Neural MMO challenge, hosted at IJCAI 2022, which received 1600+ submissions. This competition targets robustness and generalization in multi-agent systems: participants train teams of agents to complete a multi-task objective against opponents not seen during training. The competition combines relatively complex environment design with large numbers of agents in the environment. The top submissions demonstrate strong success on this task using mostly standard reinforcement learning (RL) methods combined with domain-specific engineering. We summarize the competition design and results and suggest that, as an academic community, competitions may be a powerful approach to solving hard problems and establishing a solid benchmark for algorithms. We will open-source our benchmark including the environment wrapper, baselines, a visualization tool, and selected policies for further research.
Multi-agent Exploration with Sub-state Entropy Estimation
Tao, Jian, Zhang, Yang, Chen, Yangkun, Li, Xiu
Researchers have integrated exploration techniques into multi-agent reinforcement learning (MARL) algorithms, drawing on their remarkable success in deep reinforcement learning. Nonetheless, exploration in MARL presents a more substantial challenge, as agents need to coordinate their efforts in order to achieve comprehensive state coverage. Reaching a unanimous agreement on which kinds of states warrant exploring can be a struggle for agents in this context. We introduce \textbf{M}ulti-agent \textbf{E}xploration based on \textbf{S}ub-state \textbf{E}ntropy (MESE) to address this limitation. This novel approach incentivizes agents to explore states cooperatively by directing them to achieve consensus via an extra team reward. Calculating the additional reward is based on the novelty of the current sub-state that merits cooperative exploration. MESE employs a conditioned entropy approach to select the sub-state, using particle-based entropy estimation to calculate the entropy. MESE is a plug-and-play module that can be seamlessly integrated into most existing MARL algorithms, which makes it a highly effective tool for reinforcement learning. Our experiments demonstrate that MESE can substantially improve the MAPPO's performance on various tasks in the StarCraft multi-agent challenge (SMAC).