Chen, Xuesong
SleepNetZero: Zero-Burden Zero-Shot Reliable Sleep Staging With Neural Networks Based on Ballistocardiograms
Li, Shuzhen, Chen, Yuxin, Chen, Xuesong, Gao, Ruiyang, Zhang, Yupeng, Yu, Chao, Li, Yunfei, Ye, Ziyi, Huang, Weijun, Yi, Hongliang, Leng, Yue, Wu, Yi
Sleep monitoring plays a crucial role in maintaining good health, with sleep staging serving as an essential metric in the monitoring process. Traditional methods, utilizing medical sensors like EEG and ECG, can be effective but often present challenges such as unnatural user experience, complex deployment, and high costs. Ballistocardiography~(BCG), a type of piezoelectric sensor signal, offers a non-invasive, user-friendly, and easily deployable alternative for long-term home monitoring. However, reliable BCG-based sleep staging is challenging due to the limited sleep monitoring data available for BCG. A restricted training dataset prevents the model from generalization across populations. Additionally, transferring to BCG faces difficulty ensuring model robustness when migrating from other data sources. To address these issues, we introduce SleepNetZero, a zero-shot learning based approach for sleep staging. To tackle the generalization challenge, we propose a series of BCG feature extraction methods that align BCG components with corresponding respiratory, cardiac, and movement channels in PSG. This allows models to be trained on large-scale PSG datasets that are diverse in population. For the migration challenge, we employ data augmentation techniques, significantly enhancing generalizability. We conducted extensive training and testing on large datasets~(12393 records from 9637 different subjects), achieving an accuracy of 0.803 and a Cohen's Kappa of 0.718. ZeroSleepNet was also deployed in real prototype~(monitoring pads) and tested in actual hospital settings~(265 users), demonstrating an accuracy of 0.697 and a Cohen's Kappa of 0.589. To the best of our knowledge, this work represents the first known reliable BCG-based sleep staging effort and marks a significant step towards in-home health monitoring.
Mozart's Touch: A Lightweight Multi-modal Music Generation Framework Based on Pre-Trained Large Models
Xu, Tianze, Li, Jiajun, Chen, Xuesong, Yao, Xinrui, Liu, Shuchang
In recent years, AI-Generated Content (AIGC) has witnessed rapid advancements, facilitating the generation of music, images, and other forms of artistic expression across various industries. However, researches on general multi-modal music generation model remain scarce. To fill this gap, we propose a multi-modal music generation framework Mozart's Touch. It could generate aligned music with the cross-modality inputs, such as images, videos and text. Mozart's Touch is composed of three main components: Multi-modal Captioning Module, Large Language Model (LLM) Understanding & Bridging Module, and Music Generation Module. Unlike traditional approaches, Mozart's Touch requires no training or fine-tuning pre-trained models, offering efficiency and transparency through clear, interpretable prompts. We also introduce "LLM-Bridge" method to resolve the heterogeneous representation problems between descriptive texts of different modalities. We conduct a series of objective and subjective evaluations on the proposed model, and results indicate that our model surpasses the performance of current state-of-the-art models. Our codes and examples is availble at: https://github.com/WangTooNaive/MozartsTouch
Understanding Human Reading Comprehension with Brain Signals
Ye, Ziyi, Xie, Xiaohui, Liu, Yiqun, Wang, Zhihong, Chen, Xuesong, Zhang, Min, Ma, Shaoping
Reading comprehension is a complex cognitive process involving many human brain activities. Plenty of works have studied the reading patterns and attention allocation mechanisms in the reading process. However, little is known about what happens in human brain during reading comprehension and how we can utilize this information as implicit feedback to facilitate information acquisition performance. With the advances in brain imaging techniques such as EEG, it is possible to collect high-precision brain signals in almost real time. With neuroimaging techniques, we carefully design a lab-based user study to investigate brain activities during reading comprehension. Our findings show that neural responses vary with different types of contents, i.e., contents that can satisfy users' information needs and contents that cannot. We suggest that various cognitive activities, e.g., cognitive loading, semantic-thematic understanding, and inferential processing, at the micro-time scale during reading comprehension underpin these neural responses. Inspired by these detectable differences in cognitive activities, we construct supervised learning models based on EEG features for two reading comprehension tasks: answer sentence classification and answer extraction. Results show that it is feasible to improve their performance with brain signals. These findings imply that brain signals are valuable feedback for enhancing human-computer interactions during reading comprehension.