Goto

Collaborating Authors

 Chen, Xuanjun


A Preliminary Exploration with GPT-4o Voice Mode

arXiv.org Artificial Intelligence

With the rise of multimodal large language models, GPT-4o stands out as a pioneering model, driving us to evaluate its capabilities. This report assesses GPT-4o across various tasks to analyze its audio processing and reasoning abilities. We find that GPT-4o exhibits strong knowledge in audio, speech, and music understanding, performing well in tasks like intent classification, spoken command classification, semantic and grammatical reasoning., multilingual speech recognition, and singing analysis. It also shows greater robustness against hallucinations than other large audio-language models (LALMs). However, it struggles with tasks such as audio duration prediction and instrument classification. Additionally, GPT-4o's safety mechanisms cause it to decline tasks like speaker identification, age classification, MOS prediction, and audio deepfake detection. Notably, the model exhibits a significantly different refusal rate when responding to speaker verification tasks on different datasets. This is likely due to variations in the accompanying instructions or the quality of the input audio, suggesting the sensitivity of its built-in safeguards. Finally, we acknowledge that model performance varies with evaluation protocols. This report only serves as a preliminary exploration of the current state of LALMs.


Building a Taiwanese Mandarin Spoken Language Model: A First Attempt

arXiv.org Artificial Intelligence

This technical report presents our initial attempt to build a spoken large language model (LLM) for Taiwanese Mandarin, specifically tailored to enable real-time, speech-to-speech interaction in multi-turn conversations. Our end-to-end model incorporates a decoder-only transformer architecture and aims to achieve seamless interaction while preserving the conversational flow, including full-duplex capabilities allowing simultaneous speaking and listening. The paper also details the training process, including data preparation with synthesized dialogues and adjustments for real-time interaction. We also developed a platform to evaluate conversational fluency and response coherence in multi-turn dialogues. We hope the release of the report can contribute to the future development of spoken LLMs in Taiwanese Mandarin.


Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks

arXiv.org Artificial Intelligence

Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.


Push-Pull: Characterizing the Adversarial Robustness for Audio-Visual Active Speaker Detection

arXiv.org Artificial Intelligence

Audio-visual active speaker detection (AVASD) is well-developed, and now is an indispensable front-end for several multi-modal applications. However, to the best of our knowledge, the adversarial robustness of AVASD models hasn't been investigated, not to mention the effective defense against such attacks. In this paper, we are the first to reveal the vulnerability of AVASD models under audio-only, visual-only, and audio-visual adversarial attacks through extensive experiments. What's more, we also propose a novel audio-visual interaction loss (AVIL) for making attackers difficult to find feasible adversarial examples under an allocated attack budget. The loss aims at pushing the inter-class embeddings to be dispersed, namely non-speech and speech clusters, sufficiently disentangled, and pulling the intra-class embeddings as close as possible to keep them compact. Experimental results show the AVIL outperforms the adversarial training by 33.14 mAP (%) under multi-modal attacks.