Chen, Xiuyi
From System 1 to System 2: A Survey of Reasoning Large Language Models
Li, Zhong-Zhi, Zhang, Duzhen, Zhang, Ming-Liang, Zhang, Jiaxin, Liu, Zengyan, Yao, Yuxuan, Xu, Haotian, Zheng, Junhao, Wang, Pei-Jie, Chen, Xiuyi, Zhang, Yingying, Yin, Fei, Dong, Jiahua, Guo, Zhijiang, Song, Le, Liu, Cheng-Lin
Achieving human-level intelligence requires refining the transition from the fast, intuitive System 1 to the slower, more deliberate System 2 reasoning. While System 1 excels in quick, heuristic decisions, System 2 relies on logical reasoning for more accurate judgments and reduced biases. Foundational Large Language Models (LLMs) excel at fast decision-making but lack the depth for complex reasoning, as they have not yet fully embraced the step-by-step analysis characteristic of true System 2 thinking. Recently, reasoning LLMs like OpenAI's o1/o3 and DeepSeek's R1 have demonstrated expert-level performance in fields such as mathematics and coding, closely mimicking the deliberate reasoning of System 2 and showcasing human-like cognitive abilities. This survey begins with a brief overview of the progress in foundational LLMs and the early development of System 2 technologies, exploring how their combination has paved the way for reasoning LLMs. Next, we discuss how to construct reasoning LLMs, analyzing their features, the core methods enabling advanced reasoning, and the evolution of various reasoning LLMs. Additionally, we provide an overview of reasoning benchmarks, offering an in-depth comparison of the performance of representative reasoning LLMs. Finally, we explore promising directions for advancing reasoning LLMs and maintain a real-time \href{https://github.com/zzli2022/Awesome-Slow-Reason-System}{GitHub Repository} to track the latest developments. We hope this survey will serve as a valuable resource to inspire innovation and drive progress in this rapidly evolving field.
Learning to Use Tools via Cooperative and Interactive Agents
Shi, Zhengliang, Gao, Shen, Chen, Xiuyi, Feng, Yue, Yan, Lingyong, Shi, Haibo, Yin, Dawei, Ren, Pengjie, Verberne, Suzan, Ren, Zhaochun
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility. Existing methods employ one single LLM-based agent to iteratively select and execute tools, thereafter incorporating execution results into the next action prediction. Despite their progress, these methods suffer from performance degradation when addressing practical tasks due to: (1) the pre-defined pipeline with restricted flexibility to calibrate incorrect actions, and (2) the struggle to adapt a general LLM-based agent to perform a variety of specialized actions. To mitigate these problems, we propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately. ConAgents introduces two communication protocols to enable the flexible cooperation of agents. To effectively generalize the ConAgents into open-source models, we also propose specialized action distillation, enhancing their ability to perform specialized actions in our framework. Our extensive experiments on three datasets show that the LLMs, when equipped with the ConAgents, outperform baselines with substantial improvement (i.e., up to 14% higher success rate).
Chain of Tools: Large Language Model is an Automatic Multi-tool Learner
Shi, Zhengliang, Gao, Shen, Chen, Xiuyi, Feng, Yue, Yan, Lingyong, Shi, Haibo, Yin, Dawei, Chen, Zhumin, Verberne, Suzan, Ren, Zhaochun
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extend their utility, empowering them to solve practical tasks. Existing work typically empowers LLMs as tool users with a manually designed workflow, where the LLM plans a series of tools in a step-by-step manner, and sequentially executes each tool to obtain intermediate results until deriving the final answer. However, they suffer from two challenges in realistic scenarios: (1) The handcrafted control flow is often ad-hoc and constraints the LLM to local planning; (2) The LLM is instructed to use only manually demonstrated tools or well-trained Python functions, which limits its generalization to new tools. In this work, we first propose Automatic Tool Chain (ATC), a framework that enables the LLM to act as a multi-tool user, which directly utilizes a chain of tools through programming. To scale up the scope of the tools, we next propose a black-box probing method. This further empowers the LLM as a tool learner that can actively discover and document tool usages, teaching themselves to properly master new tools. For a comprehensive evaluation, we build a challenging benchmark named ToolFlow, which diverges from previous benchmarks by its long-term planning scenarios and complex toolset. Experiments on both existing datasets and ToolFlow illustrate the superiority of our framework.
Continual Named Entity Recognition without Catastrophic Forgetting
Zhang, Duzhen, Cong, Wei, Dong, Jiahua, Yu, Yahan, Chen, Xiuyi, Zhang, Yonggang, Fang, Zhen
Continual Named Entity Recognition (CNER) is a burgeoning area, which involves updating an existing model by incorporating new entity types sequentially. Nevertheless, continual learning approaches are often severely afflicted by catastrophic forgetting. This issue is intensified in CNER due to the consolidation of old entity types from previous steps into the non-entity type at each step, leading to what is known as the semantic shift problem of the non-entity type. In this paper, we introduce a pooled feature distillation loss that skillfully navigates the trade-off between retaining knowledge of old entity types and acquiring new ones, thereby more effectively mitigating the problem of catastrophic forgetting. Additionally, we develop a confidence-based pseudo-labeling for the non-entity type, \emph{i.e.,} predicting entity types using the old model to handle the semantic shift of the non-entity type. Following the pseudo-labeling process, we suggest an adaptive re-weighting type-balanced learning strategy to handle the issue of biased type distribution. We carried out comprehensive experiments on ten CNER settings using three different datasets. The results illustrate that our method significantly outperforms prior state-of-the-art approaches, registering an average improvement of $6.3$\% and $8.0$\% in Micro and Macro F1 scores, respectively.
Task Relation Distillation and Prototypical Pseudo Label for Incremental Named Entity Recognition
Zhang, Duzhen, Li, Hongliu, Cong, Wei, Xu, Rongtao, Dong, Jiahua, Chen, Xiuyi
Incremental Named Entity Recognition (INER) involves the sequential learning of new entity types without accessing the training data of previously learned types. However, INER faces the challenge of catastrophic forgetting specific for incremental learning, further aggravated by background shift (i.e., old and future entity types are labeled as the non-entity type in the current task). To address these challenges, we propose a method called task Relation Distillation and Prototypical pseudo label (RDP) for INER. Specifically, to tackle catastrophic forgetting, we introduce a task relation distillation scheme that serves two purposes: 1) ensuring inter-task semantic consistency across different incremental learning tasks by minimizing inter-task relation distillation loss, and 2) enhancing the model's prediction confidence by minimizing intra-task self-entropy loss. Simultaneously, to mitigate background shift, we develop a prototypical pseudo label strategy that distinguishes old entity types from the current non-entity type using the old model. This strategy generates high-quality pseudo labels by measuring the distances between token embeddings and type-wise prototypes. We conducted extensive experiments on ten INER settings of three benchmark datasets (i.e., CoNLL2003, I2B2, and OntoNotes5). The results demonstrate that our method achieves significant improvements over the previous state-of-the-art methods, with an average increase of 6.08% in Micro F1 score and 7.71% in Macro F1 score.
Matching-based Term Semantics Pre-training for Spoken Patient Query Understanding
Hu, Zefa, Chen, Xiuyi, Wu, Haoran, Han, Minglun, Ni, Ziyi, Shi, Jing, Xu, Shuang, Xu, Bo
Medical Slot Filling (MSF) task aims to convert medical queries into structured information, playing an essential role in diagnosis dialogue systems. However, the lack of sufficient term semantics learning makes existing approaches hard to capture semantically identical but colloquial expressions of terms in medical conversations. In this work, we formalize MSF into a matching problem and propose a Term Semantics Pre-trained Matching Network (TSPMN) that takes both terms and queries as input to model their semantic interaction. To learn term semantics better, we further design two self-supervised objectives, including Contrastive Term Discrimination (CTD) and Matching-based Mask Term Modeling (MMTM). CTD determines whether it is the masked term in the dialogue for each given term, while MMTM directly predicts the masked ones. Experimental results on two Chinese benchmarks show that TSPMN outperforms strong baselines, especially in few-shot settings.
Modeling Attention and Memory for Auditory Selection in a Cocktail Party Environment
Xu, Jiaming (Chinese Academy of Sciences, Institute of Automation) | Shi, Jing (Chinese Academy of Sciences, Institute of Automation) | Liu, Guangcan (Chinese Academy of Sciences, Institute of Automation) | Chen, Xiuyi (Chinese Academy of Sciences, Institute of Automation) | Xu, Bo (Chinese Academy of Sciences, Institute of Automation)
Developing a computational auditory model to solve the cocktail party problem has long bedeviled scientists, especially for a single microphone recording. Although recent deep learning based frameworks have made significant progress in multi-talker mixed speech separation, most existing deep learning based methods, focusing on separating all the speech channels rather than selectively attending the target speech and ignoring other sounds, may fail to offer a satisfactory solution in a complex auditory scene where the number of input sounds is usually uncertain and even dynamic. In this work, we employ ideas from auditory selective attention of behavioral and cognitive neurosciences and from recent advances of memory-augmented neural networks. Specifically, a unified Auditory Selection framework with Attention and Memory (dubbed ASAM) is proposed. Our ASAM first accumulates the prior knowledge (that is the acoustic feature to one specific speaker) into a life-long memory during the training phase, meanwhile a speech perceptor is trained to extract the temporal acoustic feature and update the memory online when a salient speech is given. Then, the learned memory is utilized to interact with the mixture input to attend and filter the target frequency out from the mixture stream. Finally, the network is trained to minimize the reconstruction error of the attended speech. We evaluate the proposed approach on WSJ0 and THCHS-30 datasets and the experimental results demonstrate that our approach successfully conducts two auditory selection tasks: the top-down task-specific attention (e.g. to follow a conversation with friend) and the bottom-up stimulus-driven attention (e.g. be attracted by a salient speech). Compared with deep clustering based methods, our method conducts competitive advantages especially in a real noise environment (e.g. street junction). Our code is available at https://github.com/jacoxu/ASAM.