Goto

Collaborating Authors

 Chen, Xinyue


MeetMap: Real-Time Collaborative Dialogue Mapping with LLMs in Online Meetings

arXiv.org Artificial Intelligence

Video meeting platforms display conversations linearly through transcripts or summaries. However, ideas during a meeting do not emerge linearly. We leverage LLMs to create dialogue maps in real time to help people visually structure and connect ideas. Balancing the need to reduce the cognitive load on users during the conversation while giving them sufficient control when using AI, we explore two system variants that encompass different levels of AI assistance. In Human-Map, AI generates summaries of conversations as nodes, and users create dialogue maps with the nodes. In AI-Map, AI produces dialogue maps where users can make edits. We ran a within-subject experiment with ten pairs of users, comparing the two MeetMap variants and a baseline. Users preferred MeetMap over traditional methods for taking notes, which aligned better with their mental models of conversations. Users liked the ease of use for AI-Map due to the low effort demands and appreciated the hands-on opportunity in Human-Map for sense-making.


Bridging Gaps: Federated Multi-View Clustering in Heterogeneous Hybrid Views

arXiv.org Artificial Intelligence

Recently, federated multi-view clustering (FedMVC) has emerged to explore cluster structures in multi-view data distributed on multiple clients. Existing approaches often assume that clients are isomorphic and all of them belong to either single-view clients or multi-view clients. Despite their success, these methods also present limitations when dealing with practical FedMVC scenarios involving heterogeneous hybrid views, where a mixture of both single-view and multi-view clients exhibit varying degrees of heterogeneity. In this paper, we propose a novel FedMVC framework, which concurrently addresses two challenges associated with heterogeneous hybrid views, i.e., client gap and view gap. To address the client gap, we design a local-synergistic contrastive learning approach that helps single-view clients and multi-view clients achieve consistency for mitigating heterogeneity among all clients. To address the view gap, we develop a global-specific weighting aggregation method, which encourages global models to learn complementary features from hybrid views. The interplay between local-synergistic contrastive learning and global-specific weighting aggregation mutually enhances the exploration of the data cluster structures distributed on multiple clients. Theoretical analysis and extensive experiments demonstrate that our method can handle the heterogeneous hybrid views in FedMVC and outperforms state-of-the-art methods.


Memory-guided Network with Uncertainty-based Feature Augmentation for Few-shot Semantic Segmentation

arXiv.org Artificial Intelligence

The performance of supervised semantic segmentation methods highly relies on the availability of large-scale training data. To alleviate this dependence, few-shot semantic segmentation (FSS) is introduced to leverage the model trained on base classes with sufficient data into the segmentation of novel classes with few data. FSS methods face the challenge of model generalization on novel classes due to the distribution shift between base and novel classes. To overcome this issue, we propose a class-shared memory (CSM) module consisting of a set of learnable memory vectors. These memory vectors learn elemental object patterns from base classes during training whilst re-encoding query features during both training and inference, thereby improving the distribution alignment between base and novel classes. Furthermore, to cope with the performance degradation resulting from the intra-class variance across images, we introduce an uncertainty-based feature augmentation (UFA) module to produce diverse query features during training for improving the model's robustness. We integrate CSM and UFA into representative FSS works, with experimental results on the widely-used PASCAL-5$^i$ and COCO-20$^i$ datasets demonstrating the superior performance of ours over state of the art.


Revisiting the Role of Language Priors in Vision-Language Models

arXiv.org Artificial Intelligence

Vision-language models (VLMs) are impactful in part because they can be applied to a variety of visual understanding tasks in a zero-shot fashion, without any fine-tuning. We study $\textit{generative VLMs}$ that are trained for next-word generation given an image. We explore their zero-shot performance on the illustrative task of image-text retrieval across 8 popular vision-language benchmarks. Our first observation is that they can be repurposed for discriminative tasks (such as image-text retrieval) by simply computing the match score of generating a particular text string given an image. We call this probabilistic score the $\textit{Visual Generative Pre-Training Score}$ (VisualGPTScore). While the VisualGPTScore produces near-perfect accuracy on some retrieval benchmarks, it yields poor accuracy on others. We analyze this behavior through a probabilistic lens, pointing out that some benchmarks inadvertently capture unnatural language distributions by creating adversarial but unlikely text captions. In fact, we demonstrate that even a "blind" language model that ignores any image evidence can sometimes outperform all prior art, reminiscent of similar challenges faced by the visual-question answering (VQA) community many years ago. We derive a probabilistic post-processing scheme that controls for the amount of linguistic bias in generative VLMs at test time without having to retrain or fine-tune the model. We show that the VisualGPTScore, when appropriately debiased, is a strong zero-shot baseline for vision-language understanding, oftentimes producing state-of-the-art accuracy.


HiQA: A Hierarchical Contextual Augmentation RAG for Massive Documents QA

arXiv.org Artificial Intelligence

As language model agents leveraging external tools rapidly evolve, significant progress has been made in question-answering(QA) methodologies utilizing supplementary documents and the Retrieval-Augmented Generation (RAG) approach. This advancement has improved the response quality of language models and alleviates the appearance of hallucination. However, these methods exhibit limited retrieval accuracy when faced with massive indistinguishable documents, presenting notable challenges in their practical application. In response to these emerging challenges, we present HiQA, an advanced framework for multi-document question-answering (MDQA) that integrates cascading metadata into content as well as a multi-route retrieval mechanism. We also release a benchmark called MasQA to evaluate and research in MDQA. Finally, HiQA demonstrates the state-of-the-art performance in multi-document environments.


Federated Deep Multi-View Clustering with Global Self-Supervision

arXiv.org Artificial Intelligence

Federated multi-view clustering has the potential to learn a global clustering model from data distributed across multiple devices. In this setting, label information is unknown and data privacy must be preserved, leading to two major challenges. First, views on different clients often have feature heterogeneity, and mining their complementary cluster information is not trivial. Second, the storage and usage of data from multiple clients in a distributed environment can lead to incompleteness of multi-view data. To address these challenges, we propose a novel federated deep multi-view clustering method that can mine complementary cluster structures from multiple clients, while dealing with data incompleteness and privacy concerns. Specifically, in the server environment, we propose sample alignment and data extension techniques to explore the complementary cluster structures of multiple views. The server then distributes global prototypes and global pseudo-labels to each client as global self-supervised information. In the client environment, multiple clients use the global self-supervised information and deep autoencoders to learn view-specific cluster assignments and embedded features, which are then uploaded to the server for refining the global self-supervised information. Finally, the results of our extensive experiments demonstrate that our proposed method exhibits superior performance in addressing the challenges of incomplete multi-view data in distributed environments.


Hybrid Transducer and Attention based Encoder-Decoder Modeling for Speech-to-Text Tasks

arXiv.org Artificial Intelligence

Transducer and Attention based Encoder-Decoder (AED) are two widely used frameworks for speech-to-text tasks. They are designed for different purposes and each has its own benefits and drawbacks for speech-to-text tasks. In order to leverage strengths of both modeling methods, we propose a solution by combining Transducer and Attention based Encoder-Decoder (TAED) for speech-to-text tasks. The new method leverages AED's strength in non-monotonic sequence to sequence learning while retaining Transducer's streaming property. In the proposed framework, Transducer and AED share the same speech encoder. The predictor in Transducer is replaced by the decoder in the AED model, and the outputs of the decoder are conditioned on the speech inputs instead of outputs from an unconditioned language model. The proposed solution ensures that the model is optimized by covering all possible read/write scenarios and creates a matched environment for streaming applications. We evaluate the proposed approach on the \textsc{MuST-C} dataset and the findings demonstrate that TAED performs significantly better than Transducer for offline automatic speech recognition (ASR) and speech-to-text translation (ST) tasks. In the streaming case, TAED outperforms Transducer in the ASR task and one ST direction while comparable results are achieved in another translation direction.


Aggressive Q-Learning with Ensembles: Achieving Both High Sample Efficiency and High Asymptotic Performance

arXiv.org Artificial Intelligence

Recently, Truncated Quantile Critics (TQC), using distributional representation of critics, was shown to provide state-of-the-art asymptotic training performance on all environments from the MuJoCo continuous control benchmark suite. Also recently, Randomized Ensemble Double Q-Learning (REDQ), using a high updateto-data ratio and target randomization, was shown to achieve high sample efficiency that is competitive with state-of-the-art model-based methods. In this paper, we propose a novel model-free algorithm, Aggressive Q-Learning with Ensembles (AQE), which improves the sample-efficiency performance of REDQ and the asymptotic performance of TQC, thereby providing overall state-of-the-art performance during all stages of training. Moreover, AQE is very simple, requiring neither distributional representation of critics nor target randomization. Off-policy Deep Reinforcement Learning algorithms aim to improve sample efficiency by reusing past experience. A number of off-policy Deep RL algorithms have been proposed for control tasks with continuous state and action spaces, including Deep Deterministic Policy Gradient (DDPG), Twin Delayed DDPG (TD3) and Soft Actor Critic (SAC) (Lillicrap et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018a;b). TD3 introduced clipped double-Q learning, and was shown to be significantly more sample efficient than popular on-policy methods for a wide range of MuJoCo benchmarks. Soft Actor Critic (SAC) has similar off-policy structures with clipped double-Q learning, but it also employs maximum entropy reinforcement learning. SAC was shown to provide excellent sample efficiency and asymptotic performance in a wide-range of MuJoCo environments, including the high-dimensional Humanoid environment for which both DDPG and TD3 perform poorly.


Randomized Ensembled Double Q-Learning: Learning Fast Without a Model

arXiv.org Artificial Intelligence

Using a high Update-To-Data (UTD) ratio, model-based methods have recently achieved much higher sample efficiency than previous model-free methods for continuous-action DRL benchmarks. In this paper, we introduce a simple model-free algorithm, Randomized Ensembled Double Q-Learning (REDQ), and show that its performance is just as good as, if not better than, a state-of-the-art model-based algorithm for the MuJoCo benchmark. Moreover, REDQ can achieve this performance using fewer parameters than the model-based method, and with less wall-clock run time. REDQ has three carefully integrated ingredients which allow it to achieve its high performance: (i) a UTD ratio >> 1; (ii) an ensemble of Q functions; (iii) in-target minimization across a random subset of Q functions from the ensemble. Through carefully designed experiments, we provide a detailed analysis of REDQ and related model-free algorithms. To our knowledge, REDQ is the first successful model-free DRL algorithm for continuous-action spaces using a UTD ratio >> 1.


BAIL: Best-Action Imitation Learning for Batch Deep Reinforcement Learning

arXiv.org Artificial Intelligence

The field of Deep Reinforcement Learning (DRL) has recently seen a surge in research in batch reinforcement learning, which aims for sample-efficient learning from a given data set without additional interactions with the environment. In the batch DRL setting, commonly employed off-policy DRL algorithms can perform poorly and sometimes even fail to learn altogether. In this paper, we propose a new algorithm, Best-Action Imitation Learning (BAIL), which unlike many off-policy DRL algorithms does not involve maximizing Q functions over the action space. Striving for simplicity as well as performance, BAIL first selects from the batch the actions it believes to be high-performing actions for their corresponding states; it then uses those state-action pairs to train a policy network using imitation learning. Although BAIL is simple, we demonstrate that BAIL achieves state of the art performance on the Mujoco benchmark.