Chen, Xinyuan
Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
Fan, Weichen, Si, Chenyang, Song, Junhao, Yang, Zhenyu, He, Yinan, Zhuo, Long, Huang, Ziqi, Dong, Ziyue, He, Jingwen, Pan, Dongwei, Wang, Yi, Jiang, Yuming, Wang, Yaohui, Gao, Peng, Chen, Xinyuan, Li, Hengjie, Lin, Dahua, Qiao, Yu, Liu, Ziwei
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
A flexible Bayesian g-formula for causal survival analyses with time-dependent confounding
Chen, Xinyuan, Hu, Liangyuan, Li, Fan
In longitudinal observational studies with a time-to-event outcome, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios within the study cohort. The g-formula is a particularly useful tool for this analysis. To enhance the traditional parametric g-formula approach, we developed a more adaptable Bayesian g-formula estimator. This estimator facilitates both longitudinal predictive and causal inference. It incorporates Bayesian additive regression trees in the modeling of the time-evolving generative components, aiming to mitigate bias due to model misspecification. Specifically, we introduce a more general class of g-formulas for discrete survival data. These formulas can incorporate the longitudinal balancing scores, which serve as an effective method for dimension reduction and are vital when dealing with an expanding array of time-varying confounders. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment regimes, whether static or dynamic. For each type of treatment regime, we provide posterior sampling algorithms, which are grounded in the Bayesian additive regression trees framework. We have conducted simulation studies to illustrate the empirical performance of our proposed Bayesian g-formula estimators, and to compare them with existing parametric estimators. We further demonstrate the practical utility of our methods in real-world scenarios using data from the Yale New Haven Health System's electronic health records.
Vlogger: Make Your Dream A Vlog
Zhuang, Shaobin, Li, Kunchang, Chen, Xinyuan, Wang, Yaohui, Liu, Ziwei, Qiao, Yu, Wang, Yali
In this work, we present Vlogger, a generic AI system for generating a minute-level video blog (i.e., vlog) of user descriptions. Different from short videos with a few seconds, vlog often contains a complex storyline with diversified scenes, which is challenging for most existing video generation approaches. To break through this bottleneck, our Vlogger smartly leverages Large Language Model (LLM) as Director and decomposes a long video generation task of vlog into four key stages, where we invoke various foundation models to play the critical roles of vlog professionals, including (1) Script, (2) Actor, (3) ShowMaker, and (4) Voicer. With such a design of mimicking human beings, our Vlogger can generate vlogs through explainable cooperation of top-down planning and bottom-up shooting. Moreover, we introduce a novel video diffusion model, ShowMaker, which serves as a videographer in our Vlogger for generating the video snippet of each shooting scene. By incorporating Script and Actor attentively as textual and visual prompts, it can effectively enhance spatial-temporal coherence in the snippet. Besides, we design a concise mixed training paradigm for ShowMaker, boosting its capacity for both T2V generation and prediction. Finally, the extensive experiments show that our method achieves state-of-the-art performance on zero-shot T2V generation and prediction tasks. More importantly, Vlogger can generate over 5-minute vlogs from open-world descriptions, without loss of video coherence on script and actor. The code and model is all available at https://github.com/zhuangshaobin/Vlogger.
Hierarchical Diffusion Autoencoders and Disentangled Image Manipulation
Lu, Zeyu, Wu, Chengyue, Chen, Xinyuan, Wang, Yaohui, Bai, Lei, Qiao, Yu, Liu, Xihui
Diffusion models have attained impressive visual quality for image synthesis. However, how to interpret and manipulate the latent space of diffusion models has not been extensively explored. Prior work diffusion autoencoders encode the semantic representations into a semantic latent code, which fails to reflect the rich information of details and the intrinsic feature hierarchy. To mitigate those limitations, we propose Hierarchical Diffusion Autoencoders (HDAE) that exploit the fine-grained-to-abstract and lowlevel-to-high-level feature hierarchy for the latent space of diffusion models. The hierarchical latent space of HDAE inherently encodes different abstract levels of semantics and provides more comprehensive semantic representations. In addition, we propose a truncated-feature-based approach for disentangled image manipulation. We demonstrate the effectiveness of our proposed approach with extensive experiments and applications on image reconstruction, style mixing, controllable interpolation, detail-preserving and disentangled image manipulation, and multi-modal semantic image synthesis.
DGFont++: Robust Deformable Generative Networks for Unsupervised Font Generation
Chen, Xinyuan, Xie, Yangchen, Sun, Li, Lu, Yue
Automatic font generation without human experts is a practical and significant problem, especially for some languages that consist of a large number of characters. Existing methods for font generation are often in supervised learning. They require a large number of paired data, which are labor-intensive and expensive to collect. In contrast, common unsupervised image-to-image translation methods are not applicable to font generation, as they often define style as the set of textures and colors. In this work, we propose a robust deformable generative network for unsupervised font generation (abbreviated as DGFont++). We introduce a feature deformation skip connection (FDSC) to learn local patterns and geometric transformations between fonts. The FDSC predicts pairs of displacement maps and employs the predicted maps to apply deformable convolution to the low-level content feature maps. The outputs of FDSC are fed into a mixer to generate final results. Moreover, we introduce contrastive self-supervised learning to learn a robust style representation for fonts by understanding the similarity and dissimilarities of fonts. To distinguish different styles, we train our model with a multi-task discriminator, which ensures that each style can be discriminated independently. In addition to adversarial loss, another two reconstruction losses are adopted to constrain the domain-invariant characteristics between generated images and content images. Taking advantage of FDSC and the adopted loss functions, our model is able to maintain spatial information and generates high-quality character images in an unsupervised manner. Experiments demonstrate that our model is able to generate character images of higher quality than state-of-the-art methods.
OCR-RTPS: An OCR-based real-time positioning system for the valet parking
Wu, Zizhang, Chen, Xinyuan, Wang, Jizheng, Wang, Xiaoquan, Gan, Yuanzhu, Fang, Muqing, Xu, Tianhao
Obtaining the position of ego-vehicle is a crucial prerequisite for automatic control and path planning in the field of autonomous driving. Most existing positioning systems rely on GPS, RTK, or wireless signals, which are arduous to provide effective localization under weak signal conditions. This paper proposes a real-time positioning system based on the detection of the parking numbers as they are unique positioning marks in the parking lot scene. It does not only can help with the positioning with open area, but also run independently under isolation environment. The result tested on both public datasets and self-collected dataset show that the system outperforms others in both performances and applies in practice. In addition, the code and dataset will release later.