Chen, Xinlong
VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Chen, Xinlong, Zhang, Yuanxing, Rao, Chongling, Guan, Yushuo, Liu, Jiaheng, Zhang, Fuzheng, Song, Chengru, Liu, Qiang, Zhang, Di, Tan, Tieniu
The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models
Liu, Qiang, Chen, Xinlong, Ding, Yue, Xu, Shizhen, Wu, Shu, Wang, Liang
Hallucination has emerged as a significant barrier to the effective application of Large Language Models (LLMs). In this work, we introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in LLMs. The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries. Each query is then processed separately through the LLMs, allowing us to compute consistency scores between the generated responses and the original answer. The difference between the two consistency scores serves as a hallucination estimator. In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational overhead, requiring only three passes through the LLM and utilizing two sets of tokens. We have conducted extensive experiments with four widely-used LLMs across three different hallucination benchmarks, demonstrating that our approach significantly outperforms existing methods in zero-shot hallucination detection.
Curriculum-Enhanced Residual Soft An-Isotropic Normalization for Over-smoothness in Deep GNNs
Li, Jin, Zhang, Qirong, Xu, Shuling, Chen, Xinlong, Guo, Longkun, Fu, Yang-Geng
Despite Graph neural networks' significant performance gain over many classic techniques in various graph-related downstream tasks, their successes are restricted in shallow models due to over-smoothness and the difficulties of optimizations among many other issues. In this paper, to alleviate the over-smoothing issue, we propose a soft graph normalization method to preserve the diversities of node embeddings and prevent indiscrimination due to possible over-closeness. Combined with residual connections, we analyze the reason why the method can effectively capture the knowledge in both input graph structures and node features even with deep networks. Additionally, inspired by Curriculum Learning that learns easy examples before the hard ones, we propose a novel label-smoothing-based learning framework to enhance the optimization of deep GNNs, which iteratively smooths labels in an auxiliary graph and constructs many gradual non-smooth tasks for extracting increasingly complex knowledge and gradually discriminating nodes from coarse to fine. The method arguably reduces the risk of overfitting and generalizes better results. Finally, extensive experiments are carried out to demonstrate the effectiveness and potential of the proposed model and learning framework through comparison with twelve existing baselines including the state-of-the-art methods on twelve real-world node classification benchmarks.