Plotting

 Chen, Xiaoping


Task planning and explanation with virtual actions

arXiv.org Artificial Intelligence

One of the challenges of task planning is to find out what causes the planning failure and how to handle the failure intelligently. This paper shows how to achieve this. The idea is inspired by the connected graph: each verticle represents a set of compatible \textit{states}, and each edge represents an \textit{action}. For any given initial states and goals, we construct virtual actions to ensure that we always get a plan via task planning. This paper shows how to introduce virtual action to extend action models to make the graph to be connected: i) explicitly defines static predicate (type, permanent properties, etc) or dynamic predicate (state); ii) constructs a full virtual action or a semi-virtual action for each state; iii) finds the cause of the planning failure through a progressive planning approach. The implementation was evaluated in three typical scenarios.


A Q-learning Control Method for a Soft Robotic Arm Utilizing Training Data from a Rough Simulator

arXiv.org Artificial Intelligence

It is challenging to control a soft robot, where reinforcement learning methods have been applied with promising results. However, due to the poor sample efficiency, reinforcement learning methods require a large collection of training data, which limits their applications. In this paper, we propose a Q-learning controller for a physical soft robot, in which pre-trained models using data from a rough simulator are applied to improve the performance of the controller. We implement the method on our soft robot, i.e., Honeycomb Pneumatic Network (HPN) arm. The experiments show that the usage of pre-trained models can not only reduce the amount of the real-world training data, but also greatly improve its accuracy and convergence rate.


NEARL: Non-Explicit Action Reinforcement Learning for Robotic Control

arXiv.org Artificial Intelligence

Traditionally, reinforcement learning methods predict the next action based on the current state. However, in many situations, directly applying actions to control systems or robots is dangerous and may lead to unexpected behaviors because action is rather low-level. In this paper, we propose a novel hierarchical reinforcement learning framework without explicit action. Our meta policy tries to manipulate the next optimal state and actual action is produced by the inverse dynamics model. To stabilize the training process, we integrate adversarial learning and information bottleneck into our framework. Under our framework, widely available state-only demonstrations can be exploited effectively for imitation learning. Also, prior knowledge and constraints can be applied to meta policy. We test our algorithm in simulation tasks and its combination with imitation learning. The experimental results show the reliability and robustness of our algorithms.


Learning and Reasoning for Robot Dialog and Navigation Tasks

arXiv.org Artificial Intelligence

Reinforcement learning and probabilistic reasoning algorithms aim at learning from interaction experiences and reasoning with probabilistic contextual knowledge respectively. In this research, we develop algorithms for robot task completions, while looking into the complementary strengths of reinforcement learning and probabilistic reasoning techniques. The robots learn from trial-and-error experiences to augment their declarative knowledge base, and the augmented knowledge can be used for speeding up the learning process in potentially different tasks. We have implemented and evaluated the developed algorithms using mobile robots conducting dialog and navigation tasks. From the results, we see that our robot's performance can be improved by both reasoning with human knowledge and learning from task-completion experience. More interestingly, the robot was able to learn from navigation tasks to improve its dialog strategies.


Adaptive Dialog Policy Learning with Hindsight and User Modeling

arXiv.org Artificial Intelligence

Reinforcement learning methods have been used to compute dialog policies from language-based interaction experiences. Efficiency is of particular importance in dialog policy learning, because of the considerable cost of interacting with people, and the very poor user experience from low-quality conversations. Aiming at improving the efficiency of dialog policy learning, we develop algorithm LHUA (Learning with Hindsight, User modeling, and Adaptation) that, for the first time, enables dialog agents to adaptively learn with hindsight from both simulated and real users. Simulation and hindsight provide the dialog agent with more experience and more (positive) reinforcements respectively. Experimental results suggest that, in success rate and policy quality, LHUA outperforms competitive baselines from the literature, including its no-simulation, no-adaptation, and no-hindsight counterparts.


Robot Representing and Reasoning with Knowledge from Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) agents aim at learning by interacting with an environment, and are not designed for representing or reasoning with declarative knowledge. Knowledge representation and reasoning (KRR) paradigms are strong in declarative KRR tasks, but are ill-equipped to learn from such experiences. In this work, we integrate logical-probabilistic KRR with model-based RL, enabling agents to simultaneously reason with declarative knowledge and learn from interaction experiences. The knowledge from humans and RL is unified and used for dynamically computing task-specific planning models under potentially new environments. Experiments were conducted using a mobile robot working on dialog, navigation, and delivery tasks. Results show significant improvements, in comparison to existing model-based RL methods.


KDSL: a Knowledge-Driven Supervised Learning Framework for Word Sense Disambiguation

arXiv.org Artificial Intelligence

We propose KDSL, a new word sense disambiguation (WSD) framework that utilizes knowledge to automatically generate sense-labeled data for supervised learning. First, from WordNet, we automatically construct a semantic knowledge base called DisDict, which provides refined feature words that highlight the differences among word senses, i.e., synsets. Second, we automatically generate new sense-labeled data by DisDict from unlabeled corpora. Third, these generated data, together with manually labeled data and unlabeled data, are fed to a neural framework conducting supervised and unsupervised learning jointly to model the semantic relations among synsets, feature words and their contexts. The experimental results show that KDSL outperforms several representative state-of-the-art methods on various major benchmarks. Interestingly, it performs relatively well even when manually labeled data is unavailable, thus provides a potential solution for similar tasks in a lack of manual annotations.


Learning to Dialogue via Complex Hindsight Experience Replay

arXiv.org Artificial Intelligence

Reinforcement learning methods have been used for learning dialogue policies from the experience of conversations. However, learning an effective dialogue policy frequently requires prohibitively many conversations. This is partly because of the sparse rewards in dialogues, and the relatively small number of successful dialogues in early learning phase. Hindsight experience replay (HER) enables an agent to learn from failure, but the vanilla HER is inapplicable to dialogue domains due to dialogue goals being implicit (c.f., explicit goals in manipulation tasks). In this work, we develop two complex HER methods providing different trade-offs between complexity and performance. Experiments were conducted using a realistic user simulator. Results suggest that our HER methods perform better than standard and prioritized experience replay methods (as applied to deep Q-networks) in learning rate, and that our two complex HER methods can be combined to produce the best performance.


Privacy-Preserving Policy Iteration for Decentralized POMDPs

AAAI Conferences

We propose the first privacy-preserving approach to address the privacy issues that arise in multi-agent planning problems modeled as a Dec-POMDP. Our solution is a distributed message-passing algorithm based on trials, where the agents' policies are optimized using the cross-entropy method. In our algorithm, the agents' private information is protected using a public-key homomorphic cryptosystem. We prove the correctness of our algorithm and analyze its complexity in terms of message passing and encryption/decryption operations. Furthermore, we analyze several privacy aspects of our algorithm and show that it can preserve the agent privacy of non-neighbors, model privacy, and decision privacy. Our experimental results on several common Dec-POMDP benchmark problems confirm the effectiveness of our approach.


Intention-Aware Multi-Human Tracking for Human-Robot Interaction via Particle Filtering over Sets

AAAI Conferences

In order to successfully interact with multiple humans in social situations, an intelligent robot should have the ability to track multi-humans, and understand their motion intentions. We formalize this problem as a hidden Markov model, and estimate the posterior densities by particle filtering over sets approach. Our approach avoids directly performing observation-to-target association by defining a set as a joint state. The human identification problem is then solved in an expectation-maximization way. We evaluate the effectiveness of our approach by both benchamark test and real robot experiments.